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Preface

These proceedings contain the papers presented at the 9th Australasian Symposium on Parallel and Dis-
tributed Computing (AusPDC 2011), held between 17-20 January 2011 in Perth, Australia in conjunction
with the Australasian Computer Science Week (ASCW). Over the years, previously known as Australasian
Symposium on Grid Computing and e-Research (AusGrid), and starting this year, it is being referred to
as AusPDC, has become the flagship symposium for Grid, Cloud, Cluster, and Distributed Computing
research in Australia. In total, 14 submissions were received, mostly from Australia, but also from New
Zealand, United States, Asia and Europe. The full version of each paper was carefully reviewed by at
least three referees, and evaluated according to its originality, correctness, readability and relevance. A
total of 6 papers were accepted. The accepted papers cover topics from Cloud resource management, grid
inter-operation, multi-processing systems, trusted brokering, performance models, operating systems, and
networking protocols.

We are very thankful to the Program Committee members, and external reviewers for their outstanding
and timely work, which was invaluable for taking the quality of this year’s program to such a high level.
We also wish to acknowledge the efforts of the authors who submitted their papers and without whom
this conference would have not been possible. Due to the very competitive selection process, several strong
papers could not be included in the program. We sincerely hope that prospective authors will continue to
view the AusPDC symposium series as the premiere venue in the field for disseminating their work and
results. We would also like to thank the ACSW organizing committee, those that submitted papers and
those that attended the conference their work and contributions have made the symposium a great success.

Jinjun Chen
Swinburne University of Technology

Rajiv Ranjan
University of New South Wales

AusPDC 2011 Programme Chairs
January 2011
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Welcome from the Organising Committee

On behalf of the Australasian Computer Science Week 2011 (ACSW2011) Organising Committee, we wel-
come you to this year’s event hosted by Curtin University. Curtin University’s vision is to be an international
leader shaping the future through its graduates and world class research. As Western Australia’s largest
university, Curtin is leading the state in producing high quality ICT graduates. At Curtin Computing, we
offer both world class courses and research. Our Computing courses cover three key areas in IT (Computer
Science, Software Engineering and Information Technology), are based on the curricula recommendations
of IEEE Computer Society and ACM, the largest I'T professional associations in the world, and are accred-
ited by the Australian Computer Society. Curtin Computing hosts a top level research institute (IMPCA)
and offers world class facilities for large scale surveillance and pattern recognition.

We welcome delegates from over 18 countries, including Australia, New Zealand, USA, U.K., Italy,
Japan, China, Canada, Germany, Spain, Pakistan, Austria, Ireland, South Africa, Taiwan and Thailand.
We hope you will enjoy the experience of the ACSW 2011 event and get a chance to explore our wonderful
city of Perth. Perth City Centre is located on the north bank of the Swan River and offers many fun
activities and a wealth of shopping opportunities. For panoramic views of Perth and the river, one can visit
Kings Park or enjoy a relaxing picnic in one of the many recreational areas of the park.

The Curtin University campus, the venue for ACSW2011, is located just under 10km from the Perth
City Centre and is serviced by several Transperth bus routes that travel directly between Perth and Curtin
University Bus Station, as well as several other routes connecting to nearby train services.

ACSW2011 consists of the following conferences:

— Australasian Computer Science Conference (ACSC) (Chaired by Mark Reynolds)

— Australasian Computing Education Conference (ACE) (Chaired by John Hamer and Michael de Raadt)

— Australasian Database Conference (ADC) (Chaired by Heng Tao Shen and Athman Bouguettaya)

— Australasian Information Security Conference (AISC) (Chaired by Colin Boyd and Josef Piepryzk)

— Australasian User Interface Conference (AUIC) (Chaired by Christof Lutteroth)

— Australasian Symposium on Parallel and Distributed Computing (AusPDC) (Chaired by Jinjun Chen
and Rajiv Ranjan)

— Australasian Workshop on Health Informatics and Knowledge Management (HIKM) (Chaired by Ker-
ryn Butler-Henderson and Tony Sahama)

— Computing: The Australasian Theory Symposium (CATS) (Chaired by Taso Viglas and Alex Potanin)

— Australasian Computing Doctoral Consortium (ACDC) (Chaired by Rachel Cardell-Oliver and Falk
Scholer).

The nature of ACSW requires the co-operation of numerous people. We would like to thank all those
who have worked to ensure the success of ACSW2011 including the Organising Committee, the Conference
Chairs and Programme Committees, our sponsors, the keynote speakers and the delegates. Many thanks go
to Alex Potanin for his extensive advice and assistance and Wayne Kelly (ACSW2010 chair) who provided
us with a wealth of information on the running of the conference. ACSW2010 was a wonderful event and
we hope we will live up to the expectations this year.

Assoc. Prof. Mihai Lazarescu and Assoc. Prof. Ling Li
Department of Computing, Curtin University

ACSW2011 Co-Chairs
January, 2011
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CORE - Computing Research & Education

CORE welcomes all delegates to ACSW2011 in Perth. CORE, the peak body representing academic com-
puter science in Australia and New Zealand, is responsible for the annual ACSW series of meetings, which
are a unique opportunity for our community to network and to discuss research and topics of mutual in-
terest. The original component conferences ACSC, ADC, and CATS, which formed the basis of ACSWin
the mid 1990s now share this week with six other events - ACE, AISC, AUIC, AusPDC, HIKM, ACDC,
which build on the diversity of the Australasian computing community.

In 2011, we have again chosen to feature a small number of plenary speakers from across the discipline:
Heng To Shen, Gene Tsudik, ans Dexter Kozen. I thank them for their contributions to ACSW2011. I also
thank the keynote speakers invited to some of the individual conferences. The efforts of the conference
chairs and their program committees have led to strong programs in all the conferences again, thanks. And
thanks are particularly due to Mihai Lazarescu and his colleagues for organising what promises to be a
strong event.

In Australia, 2009 saw, for the first time in some years, an increase in the number of students choosing
to study IT, and a welcome if small number of new academic appointments. Also welcome is the news that
university and research funding is set to rise from 2011-12. However, it continues to be the case that per-
place funding for computer science students has fallen relative to that of other physical and mathematical
sciences, and, while bodies such as the Australian Council of Deans of ICT seek ways to increase student
interest in the area, more is needed to ensure the growth of our discipline.

During 2010, CORE continued to negotiate with the ARC on journal and conference rankings. A key
aim is now to maintain the rankings, which are widely used overseas as well as in Australia. Management of
the rankings is a challenging process that needs to balance competing special interests as well as addressing
the interests of the community as a whole.

CORE:s existence is due to the support of the member departments in Australia and New Zealand, and I
thank them for their ongoing contributions, in commitment and in financial support. Finally, I am grateful
to all those who gave their time to CORE in 2010; in particular, I thank Alex Potanin, Jenny Edwards,
Alan Fekete, Aditya Ghose, Leon Sterling, and the members of the executive and of the curriculum and
ranking committees.

Tom Gedeon

President, CORE
January, 2011



ACSW Conferences and the
Australian Computer Science Communications

The Australasian Computer Science Week of conferences has been running in some form continuously
since 1978. This makes it one of the longest running conferences in computer science. The proceedings of
the week have been published as the Australian Computer Science Communications since 1979 (with the
1978 proceedings often referred to as Volume 0). Thus the sequence number of the Australasian Computer
Science Conference is always one greater than the volume of the Communications. Below is a list of the
conferences, their locations and hosts.

2012. Volume 34. Host and Venue - RMIT University, Melbourne, VIC.
2011. Volume 33. Host and Venue - Curtin University of Technology, Perth, WA.

2010. Volume 32. Host and Venue - Queensland University of Technology, Brisbane, QLD.

2009. Volume 31. Host and Venue - Victoria University, Wellington, New Zealand.

2008. Volume 30. Host and Venue - University of Wollongong, NSW.

2007. Volume 29. Host and Venue - University of Ballarat, VIC. First running of HDKM.

2006. Volume 28. Host and Venue - University of Tasmania, TAS.

2005. Volume 27. Host - University of Newcastle, NSW. APBC held separately from 2005.

2004. Volume 26. Host and Venue - University of Otago, Dunedin, New Zealand. First running of APCCM.

2003. Volume 25. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue
- Adelaide Convention Centre, Adelaide, SA. First running of APBC. Incorporation of ACE. ACSAC held
separately from 2003.

2002. Volume 24. Host and Venue - Monash University, Melbourne, VIC.

2001. Volume 23. Hosts - Bond University and Griffith University (Gold Coast). Venue - Gold Coast, QLD.

2000. Volume 22. Hosts - Australian National University and University of Canberra. Venue - ANU, Canberra,
ACT. First running of AUIC.

1999. Volume 21. Host and Venue - University of Auckland, New Zealand.

1998. Volume 20. Hosts - University of Western Australia, Murdoch University, Edith Cowan University and
Curtin University. Venue - Perth, WA.

1997. Volume 19. Hosts - Macquarie University and University of Technology, Sydney. Venue - Sydney, NSW.
ADC held with DASFAA (rather than ACSW) in 1997.

1996. Volume 18. Host - University of Melbourne and RMIT University. Venue - Melbourne, Australia. CATS
joins ACSW.

1995. Volume 17. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue -
Glenelg, SA.

1994. Volume 16. Host and Venue - University of Canterbury, Christchurch, New Zealand. CATS run for the first
time separately in Sydney.

1993. Volume 15. Hosts - Griffith University and Queensland University of Technology. Venue - Nathan, QLD.

1992. Volume 14. Host and Venue - University of Tasmania, TAS. (ADC held separately at La Trobe University).

1991. Volume 13. Host and Venue - University of New South Wales, NSW.

1990. Volume 12. Host and Venue - Monash University, Melbourne, VIC. Joined by Database and Information
Systems Conference which in 1992 became ADC (which stayed with ACSW) and ACIS (which now operates
independently).

1989. Volume 11. Host and Venue - University of Wollongong, NSW.

1988. Volume 10. Host and Venue - University of Queensland, QLD.

1987. Volume 9. Host and Venue - Deakin University, VIC.

1986. Volume 8. Host and Venue - Australian National University, Canberra, ACT.

1985. Volume 7. Hosts - University of Melbourne and Monash University. Venue - Melbourne, VIC.

1984. Volume 6. Host and Venue - University of Adelaide, SA.

1983. Volume 5. Host and Venue - University of Sydney, NSW.

1982. Volume 4. Host and Venue - University of Western Australia, WA.

1981. Volume 3. Host and Venue - University of Queensland, QLD.

1980. Volume 2. Host and Venue - Australian National University, Canberra, ACT.

1979. Volume 1. Host and Venue - University of Tasmania, TAS.

1978. Volume 0. Host and Venue - University of New South Wales, NSW.



Conference Acronyms

ACDC Australasian Computing Doctoral Consortium

ACE Australasian Computer Education Conference

ACSC Australasian Computer Science Conference

ACSW Australasian Computer Science Week

ADC Australasian Database Conference

AISC Australasian Information Security Conference

AUIC Australasian User Interface Conference

APCCM Asia-Pacific Conference on Conceptual Modelling

AusPDC Australasian Symposium on Parallel and Distributed Computing (replaces AusGrid)
CATS Computing: Australasian Theory Symposium

HIKM Australasian Workshop on Health Informatics and Knowledge Management

Note that various name changes have occurred, which have been indicated in the Conference Acronyms sections
in respective CRPIT volumes.
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Speed and Portability issues for Random Number Generation on
Graphical Processing Units with CUDA and other Processing
Accelerators

K.A. Hawick A. Leist

D.P. Playne

M.J. Johnson

Computer Science, Institute of Information and Mathematical Sciences,
Massey University — Albany, North Shore 102-904, Auckland, New Zealand.

Tel: +64 9 414 0800

Fax: +64 9 441 8181

Email: { k.a.hawick, a.leist, d.p.playne, m.j.johnson }@massey.ac.nz

Abstract

Generating quality random numbers is a
performance-critical application for many scientific
simulations. Modern processing acceleration tech-
niques such as: graphical co-processing units(GPUs),
multi-core conventional CPUs; special purpose multi-
core CPUs; and parallel computing approaches such
as multi-threading on shared memory or message
passing on clusters, all offer ways to speed up random
number generation (RNG). Providing fast generators
that are also portable across hardware and software
platforms is non-trivial however, particularly since
many of the powerful devices available at present do
not yet support full 64-bit operations upon which
many good RNG algorithms rely. We report perfor-
mance data for a range of common RNG algorithms
on devices including: GPUs; CellBE; multicore
CPUs; and hybrids, and discuss algorithmic and
implementation issues.

Keywords: Monte-Carlo simulation; random number
generation; seed management; configuration manage-
ment; portability.

1 Introduction

Quality Monte-Carlo simulation studies rely heav-
ily on reliable and high-performance random number
generators. Many application codes are still hand-
crafted for specific scientific problems, especially in
areas like computational physics. These are often
necessary for studying problems that require many
machine cycles to attain the required statistical accu-
racy. These sorts of problem are embodied by simu-
lation problems like that of the Ising model(Hawick
et al. 2009) of a magnet (as shown in figure 1) that is
used to study critical phenomena and where a bias or
correlation pattern in the random numbers employed
leads to the wrong answer.

For such applications it is often important that the
code be portable to support taking advantage of any
and all computer cycles that are available on a wide
variety of hardware and operating system platforms.
There are a number of practical issues, not widely dis-
cussed in the literature, that are concerned with fast,
reliable and portable random number generator al-
gorithm implementations. This paper presents some
of these issues, particularly with regard to different
processing acceleration devices.

Copyright (©2011, Australian Computer Society, Inc. This pa-
per appeared at the 9th Australasian Symposium on Parallel
and Distributed Computing (AusPDC 2011), Perth, Australia..
Conferences in Research and Practice in Information Technol-
ogy (CRPIT), Vol. 118, J. Chen and R. Ranjan, Ed. Reproduc-
tion for academic, not-for profit purposes permitted provided
this text is included.

Figure 1: Monte Carlo generated Ising model on a
64 x 64 x 64 cubic mesh at its critical temperature.

Some relatively cheap accelerator devices such
as Graphical Processing Units(GPUs), heterogeneous
core processors such as the CellBE, or specialist pro-
cessors such as Field Programmable Gate Arrays (FP-
GAs) or low power mobile devices like ARM, all offer
potential price/performance advantages over conven-
tional homogeneous core CPUs at the time of writing.
Unfortunately many of these devices do not neces-
sarily support full 64 bit operations, particularly for
floating point algorithms. It is therefore interesting to
consider what high-quality random number generator
(RNG) algorithms can be deployed portably across a
range of devices and what typical performance they
can yield.

1.1 Historical Random Number Generation

Generating good quality fast random num-
bers(L’Ecuyer 2001, Brent 1997) on computers
remains a long-standing challenge(Coddington
1994, Cuccaro et al. 1995). There is still an in-
teresting algorithmic tradeoff space in which exist
very high-quality generator algorithms such as the
Mersenne-Twistor(Matsumoto & Nishimura 1998)
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that are significantly slower than those very-fast but
lower-quality algorithms such as linear congruential
generators. In between these extremes it is possible
to improve low-quality generator algorithms by
adding lag tables and shuffles tables to further
randomise or decorrelate the sequences of random
deviates and indeed to combine several independent
algorithms. Random number generators are usually
formulated in terms of mathematical recurrence
relations(Johnsonbaugh 2001) whereby repeated
application of a transformation will project a number
to another in an apparently random or decorrelated
sequence - at least to the extend that any patterns
discernible in the resulting sequence are on a scale
that is irrelevant to the application using them.

There are some philosophically deep questions
concerning what it really means for a sequence of de-
viates to be truly random. For most scientific pur-
poses it is sufficient to say that they need to be suffi-
ciently uncorrelated that when used for a Monte Carlo
simulation or other application the deviate quality
does not lead to an observable bias(Knuth 1997). Or
put more simply — that the random number gener-
ator does not lead the applications programmer to
the wrong answer. Various statistical tests, both at
a straightforward level(Coddington & Ko 1998) such
as the spacing test, scatter-plots, that detect obvious
patterns or simple statistics are possible, as well as
very specific application related tests that are highly
sensitive to correlations.

A related issue is the period length of the gener-
ator algorithm. A few deviates generated to make
a game program behaviour “interesting” to a player
does not require a generator with a challengingly long
repeat length. However, Monte Carlo calculations
that may take weeks or months of supercomputer re-
sources must have generators with very long period
lengths. In the last 20-30 years of steadily increas-
ing supercomputer performance, there has been con-
tinued interest in ever longer period generator algo-
rithms. This often ties in with the need for more
bits used in the generator. The 16-bit integer based
generators of the late 1970s, were superceded by 24-
bit (floating-point) algorithms such as the Marsaglia
lagged-Fibonacci algorithm(Marsaglia et al. 1987), by
the 64-bit integer based Mersenne-Twistor and in
very recent times by 128-bit algorithms (Deng & Xu
2003) and even longer for cryptographically strong
random number generation(Schneier 1996).

1.2 Generator Requirements

Randomness or lack of correlation amongst individual
bits or patterns in the sequence of deviates is also very
important. Some generators are known to have low
correlation in some part of the generated bit patterns
but not necessarily all, and therefore special opera-
tions can be used to only use those bit fields that
are known to be decorrelated. Generally speaking if
we have completely random bits we can generate ran-
dom logical variables (obviously) but also integers and
floating point to whatever precision we require. The
reverse is not necessarily true and have a generator
algorithm that produces a stream or sequence of inte-
gers or floating-point uniform deviates does not mean
we can use them arbitrarily to reproduce random bits.
A common target of many generator algorithms is to
produce a sequence of random uniform floating point
deviates — that is 32- or 64 bit floating point numbers
on the range [0.0,1.0). A number of transformation
algorithms(Hormann 1993) that can generate other
statistically important distributions given a uniform
stream of deviates are also well known. Some algo-
rithms require particular low level data types to make
them easily implementable. This can be an issue for

some programming languages (such as Java) that may
not offer access to low level data field features such
as unsigned integers (Coddington et al. 1999).

In many scientific programs that use random num-
bers, repeatability is important at least at the test-
ing phase of a program. Deterministic testing using
a completely repeatable and reproducible sequence
of deviates is desirable for debugging a simulation
program. Quantum physical devices are now avail-
able(ID Quantique White Paper 2010) that can in-
ject a highly random (but irreproducible) stream of
deviates into a calculation with some excellent non-
correlation behaviour. However this is not always de-
sirable for reproducibility purposes, and at the time of
writing there is still a significant overhead in obtain-
ing deviates from such devices as they are typically
implemented as I/O or bus-based devices and are not
yet integrated onto processing chips.

This gives rise to another important criteria for
random number generators - ideally they should be
well engineered in terms of having plug-compatible
software programming interfaces. This means that
a code can be tested and implemented using any
number of different generator algorithms with lit-
tle code change required. A further complication is
that for many modern programs the random num-
ber generation must be part of a parallel computa-
tion(Coddington & Newall 2004, Newell 2003). This
brings its own special problems concerned with ensur-
ing independent processors have independent decor-
related streams of deviates, and it can make complete
deterministic reproducibility impossible to guarantee
without some sort of parallel synchronisation to avoid
timing drifts between parts of a parallel computation.
Some generator algorithms are more amenable to par-
allelisation than others depending upon the memory
structure of the lag-table or whether the algorithm
supports long sequence jumps that would allow sepa-
rate processors to be initialised far apart in a shared
(long) sequence.

In summary then, the field of computer gener-
ated random number algorithms is one of “horses for
courses” — there is no single best algorithm that will
satisfy all requirements. It is therefore of worth to
review some algorithms in common use and their im-
plementation on parallel computational systems and
devices.

1.3 Paper Outline

In our present paper we give algorithmic details for
implementing several different generator algorithms
on different devices with various parallel program-
ming models. In section 3 we illustrate some key algo-
rithm implementations in CUDA and in other parallel
frameworks including conventional multi core CPUs
with both POSIX and Intel threading; single GPUs
using a data-parallel strategy; multiple GPUs in a
cluster; and CellBE processors. We also discuss how
the algorithms were timed on the various platforms.
In Sections 4.1 and 4.2 we present some detailed tim-
ings for various generators and discuss the implica-
tions in Section 5. Finally in Section 6 we offer some
conclusions on good algorithmic choices for compu-
tational science applications and directions for future
development of random number generators, given the
current trends in parallel compute devices.

2 Accelerators Architectures

Rather than producing faster machines by simply
making the Central Processing Unit faster and more
powerful, architectures are being developed with more
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specialised accelerators that can perform some spe-
cific computation much faster. We describe the ar-
chitecture for two accelerators, Graphical Processing
Units and Cell Broadband Engines.

Graphical Processing Units (GPUs) are proving
to be very powerful processing accelerators for many
scientific simulations and calculations and therefore
in this paper we implement and test random number
generators on GPUs using data-parallel techniques.
We employ NVIDIA’s compute unified device archi-
tecture (CUDA) programming language. CUDA sup-
ports very efficient code that fits the hardware, al-
though the ideas and principles extend to the Open
Compute language (OpenCL) specification(Khronos
Group 2008) which is more widely supported by dif-
ferent vendors and devices. Some work has been
done already on some generators for CUDA and
GPUs(Langdon 2009, Giles 2009) and for other mul-
ticore parallel processors such as the STI Cell Broad-
band Engine (CellBE) (Bader et al. 2008) but with
less emphasis on the topical issues of portability, per-
formance tradeoffs and lack of 64-bit support.

2.1 Graphical Processing Units

Graphical Processing Units or GPUs have emerged in
recent years as a very popular accelerator. This can
be attributed to their reasonable prices, high compu-
tational throughput, common availability and relative
ease of programming. Driven by the demands of mod-
ern 3D game graphics, both NVIDIA and ATI have
developed highly parallel architectures to provide the
processing required to supply these graphics in real-
time. This architecture can be seen in Figure 2.

1| Cache .- --------- -.

-»1| Cache -- --------- .-

Figure 2: GPU architecture

GPUs contain many scalar processors (SPs) or-
ganised into multiprocessors (MPs). In the modern
Fermi-based GeForce 400 series cards, each MP con-
tains 32 SPs whereas in previous generations each MP
contained only 8 SPs. GPU hardware can manage
many thousands of threads as well as schedule and
execute them on these multiprocessors. The mul-
tiprocessors can execute instructions independently
from each other but the scalar processors within must
execute the same instruction at the same time, this
model is known as single instruction multiple thread
(SIMT).

The main performance consideration for this ar-
chitecture is how memory is accessed. All multipro-
cessors can access the main global memory (DRAM)
of the GPU, however they also have some fast on-chip
memory that the SPs within that multiprocessor can
access. This allows SPs to reduce access to global
memory and share information. Correct use of these
on-board memory types has generally had the most
impact on performance and has often been the main
challenge of programming GPUs.

However, the release of Fermi-based GPUs has
loosened the restrictions of global memory access.

These devices now have an automatic cache struc-
ture similar to that seen on most CPUs. This cache
structure makes it easier to achieve high performance
on such devices, while still giving the developer the
option to fine-tune his code to explicitly use the fast
on-chip cache where necessary.

It is often desirable to use multiple GPUs to
achieve a higher computational throughput. Simply
using multiple GPUs is relatively easy as each GPU
connects to a host thread, however if they must com-
municate or share information it can become more of
a programming challenge. GPUs cannot communi-
cate directly and all information sent between them
must go through the host CPU. This involves copying
the information from the GPU to the host, exchang-
ing it with the other host thread and then copying it
to the other GPU.

2.2 Cell Broadband Engine

The Cell Broadband Engine (CellBE) has been less
successful as an accelerator than the GPU but still
represents an interesting target in terms of acceler-
ator development. This architecture has one tradi-
tional processor (the PPE) with 8 less powerful cores
(SPEs) that it can delegate tasks too. These cores
are all connected to the main memory of the cell and
exchange messages through the Element Interconnect
Bus. This architecture is shown in Figure: 3.

L1
L2

DRAM

Figure 3: Cell Broadband Engine architecture

The major disadvantage encountered with the
CellBE architecture was the programming API.
CellBE applications require the programmer to man-
age the distribution of tasks and the exchange of data
explicitly. Also to make full use of the CellBE pro-
cessing power, the problem must be reworked to allow
the SPEs to perform the computation in vector form.
In many applications this can present a significant
programming effort to rearrange the calculation to a
vector form

3 Random Number Generators

Random number generation is one of the most widely
used facilities in computer simulations. A num-
ber of different algorithms are widely used(L’Ecuyer
2001, Marsaglia 1984), ranging from fast but low
quality system supplied generators such as the
rand()/random() generators available on Unix(BSD
1993) systems to slower but high quality 64-bit
algorithms such as the Mersenne Twistor gener-
ator(Matsumoto & Nishimura 1998). Marsaglia’s
lagged-Fibonacci generator(Marsaglia et al. 1987) is a
24-bit algorithm that produces good quality uniform
deviates and which has been widely used in Monte
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Carlo work(Binder & Heermann 1997). It is conve-
nient for our purposes in this present paper as not all
our target accelerator hardware platforms uniformly
support 64-bit floating point calculations.

3.1 CPU - Sequential Algorithm

The Marsaglia lagged-Fibonacci random number
generator (RNG) has been described in full else-
where(Marsaglia et al. 1987), but in summary the
details are given in Algorithm 1, which we provide
for completeness.

Algorithm 1 Marsaglia Uniform Random Number
Generator, where an initialisation procedure sets the
values as given below, and fills the lag table with de-
viates. The id and signal are not required for the
sequential algorithm, but are used by the pThreads
implementation described below.

function generate(id, seed)

declare u[97]
declare i «+— 96
declare j < 32
declare ¢ «— 362436.0/16777216.0
declare d « 7654321.0/16777216.0
declare m «— 16777213.0/16777216.0
initialise(u, seed)
for n — 1 to N do
uniform(i, j, ¢, d, m,u)
end for
signal complete(id)

Algorithm 2 Marsaglia Uniform Random Number
Generator, each call will generate a single random
number.
function uniform(i, j, ¢, d, m, u)
declare result — uli] — u[j]
if result < 0 then
result «— result + 1
end if
uli] «— result
1—1i—1
if i < 0 then
i« 96
end if
Jj—j—1
if j <0 then
7«96
end if
c—c—d
if ¢ < 0 then
c<—c+m
end if
result < result — c
if result < 0 then
result «— result + 1
end if
return result

end function

Where i, j index a lag table which is shown here of
97 deviates, but which can be any suitable prime, sub-
ject to available memory and where c,d, m are suit-
able values.

A number of optimisations for this sort of random
number generation algorithm are possible on the var-
ious implementation platforms. One obvious one is
to synchronise a separate thread that can produce
an independent stream of random deviates that are
consumed by the main application thread. Other al-
gorithms, whose descriptions are beyond the space

limitations of our present paper, generate whole vec-
tors or arrays of deviates together using a SIMD ap-
proach which can be used in applications that have
similarly shaped work arrays or objects such as im-
ages or model data fields.

3.2 Multi-Core: POSIX Threads

The pThreads implementation of the lagged-
Fibonacci generator launches multiple threads that
each generate separate streams of random numbers.
To do this each thread creates and initialises its own
lag-table with a unique seed. The threads can then
simply generate random numbers using this unique
stream and the same uniform function as described
in Algorithm 1.

Each thread that is created will generate N ran-
dom numbers and then signal the main thread that it
has completed its work. This code merely generates
random numbers and does not make any use of them
but it is assumed that any pThreads application that
uses random numbers would make use of them within
this thread loop.

3.3 Multi-Core: Threading Building Blocks

Like the pThreads implementation, the TBB imple-
mentation of the lagged-Fibonacci generator creates
a number of independent RNG instances to generate
streams of random numbers. However, the RNG in-
stances are not associated with a particular hardware
thread. Instead, they are each contained in a struc-
ture that can also store additional, application spe-
cific information related to the RNG instance. For ex-
ample, it may also contain a pointer to an array that
temporarily stores the generated deviates for later
use, along with the array length. The structures are
pushed into a vector after their RNG instances have
been initialised. See Algorithm 3 for a description of
this initialisation process.

Algorithm 3 Initialising the TBB implementation of
Marsaglia’s random number generator. The parame-
ters to the function are the seed sy and the desired
number of RNG tasks t.
function initialise-tbb(sg, t)
declare V //vector
declare ry < new RngStruct
initialise(rg, so)
fori—1totdo
declare r; <— new RngStruct
declare s; < uniform(rg) * INT_MAX //seed
initialise(r;, s;)
append r; at the end of vector V
end for
return V

The parallel random number generation using
these RNGs is invoked by passing the begin and end
iterators of the vector to TBB’s parallel_for_each
function, together with a pointer to a function that
takes the structure type as its only argument. TBB
applies the given function to the results of derefer-
encing every iterator in the range [begin,end). This
is the parallel variant of std:for_each.

The function called by parallel _for_each can
then use the RNG instance passed to it to fill the ar-
ray or array range specified in the same structure or to
immediately use the random numbers in the applica-
tion specific context. The process remains repeatable
even though the thread that executes the function
with a particular RNG structure instance as parame-
ter can be different every time parallel for_each is
called.
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TBB’s task scheduler decides how many hardware
threads are used and how they are mapped to the
given tasks. While a larger number of RNG instances
allows the code to scale to more processor cores, it
also increases the overhead introduced by switching
tasks. If there are no other processes or threads con-
suming a significant amount of processing resources,
then setting the number of RNG instances equal to
the number of hardware threads gives the highest and
most consistent performance in our tests. If, however,
other threads are using some processing power, too,
then splitting the problem into a larger number of
smaller tasks gives the task scheduler more flexibility
to best utilise the remaining resources.

3.4 GPU - CUDA

The CUDA implementation of the lagged-Fibonacci
random number generator is based on generating
a separate stream of random numbers with ev-
ery CUDA thread. This approach, referred to as
CUDA 1, is repeatable and fast as race conditions
are avoided and no communication between threads is
required. Algorithms 4 and 5 illustrate the implemen-
tation of Marsaglia’s algorithm in CUDA. A relatively
small lag table should be used due to the memory re-
quirements of this approach. The code example uses
a table length of 97, which means 388-bytes for the
table per thread. Other larger prime number sized ta-
bles can be used to improve the period at the expense
of memory utilisation. The input seed value is used to
initialise a random number generator (RNG) on the
host, which is then used to generate the seeds for the
CUDA threads. The CUDA implementations of the
lag table initialisation and uniform random number
generator functions are essentially the same as on the
CPU, only that ternary expressions, which can be op-
timised by the compiler, are used to avoid branches
and array indexing is adapted so that global memory
accesses can be coalesced as long as the threads of
a half-warp always request a new random number at
the same time.

Algorithm 4 CUDA implementation of Marsaglia’s
RNG that produces T independent streams of ran-
dom numbers, where T is the number of threads. See
Algorithm 5 for the CUDA kernel.

declare T = 30720 //thread count
declare L = 97 //lag table length
function RNG1(s)

Input parameters: s is the initialisation seed.

declare S[T] //array of seeds

initialise host RNG with s

S « generate T random deviates on the host

declare S43[T] in device memory

copy Sq— S

declare Uy[TL] in device mem. //lag tables

declare Cy|T] in device mem. //array of ¢ values

declare I4[T], J4[T] in device mem. //indices

do in parallel on the device using 1" threads:
call KERNEL(Sd7 Ud, Cd, Id, Jd)

A different approach has to be taken if a single
sequence of random numbers is required. This ap-
proach, referred to as CUDA 2, only makes sense if
most of the CUDA threads require the same number
of random deviates and if giving the control back to
the host before the next random number is needed
does not come at a high cost or has to be done by the
algorithm which consumes the random numbers any-
way. The latter is necessary because this is the only
way to synchronise across all CUDA threads. Algo-
rithms 6 and 7 show how Marsaglia’s algorithm can

Algorithm 5 Algorithm 4 continued. The device ker-
nel is the piece of code that executes on the GPU. The
initialisation and uniform random number generator
functions are essentially the same as on the CPU.

function KERNEL(S,U,C, 1, J)
declare i < thread ID queried from runtime
Cli] «+ 362436.0/16777216.0
I[i] —L -1
Jt) — L/3
declare s « SJi] //load the thread’s seed
initialise the thread’s RNG using s
generate random deviates when needed

be adapted to generate random numbers in parallel
using a single, large lag table. This approach is based
on the fact that the window between the table indices
1 and j is shifted by one every time a new random de-
viate is generated and that they start with an offset of
% of the table size L. This means that %L—i— 1 random
numbers can be generated before index j reaches the
starting index of 7. It takes 3 iterations with either %L

or %L—i—l threads each to generate L random numbers,
as the table length is a prime and therefore odd. The
only value that changes every time a random num-
ber is generated is ¢, but this is not a problem as all
future values can be calculated as shown in the code
fragments. However, the values for ¢ calculated in
this way and thus the resulting random numbers are
slightly different to those generated in the usual fash-
ion due to floating point rounding errors. This means
that in order to get the same results when running
a simulation with the same seed multiple times, it is
necessary to use the same RNG implementation ev-
ery time and not use this CUDA implementation once
and the CPU implementation the next time.

Algorithm 6 CUDA implementation of Marsaglia’s
RNG that produces a single stream of random num-
bers using a large lag table. See Algorithm 7 for the
CUDA kernel.

declare L = 92153 //lag table length
declare T'=L/3 + 1 //thread count
declare D = 7654321.0/16777216.0
declare M = 16777213.0/16777216.0
function RNG1(s)

Input parameters: s is the initialisation seed.
declare U[L] //the lag table
U «+ initialise with s
declare Uy[L] in device mem. //the lag table
copy Ujg — U
declare ¢ — 362436.0/16777216.0
while more random numbers required do
//every iteration generates L random deviates
declare o < 0 //offset into the lag table
declare | — L/3+ 1 //update [ table elements
do in parallel on the device using 7" threads:
call KERNEL({,0,Uy, )
0—o+1
| — round(L/3)
do in parallel on the device using 7" threads:
call KERNEL(!, 0, Uy, ¢)
0o—o+l1
l—1L/3
do in parallel on the device using T threads:
call KERNEL(!, 0, Uy, ¢)
¢+ ¢ — LD //update c for the next iteration
¢ «— ¢+ ceil(fabs(c)/M)M
end while

The host code initialises the lag table before it is
copied to the device. It then calls the CUDA kernel
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Algorithm 7 Algorithm 6 continued. The device
kernel is the piece of code that executes on the GPU.

function KERNEL(I, 0, U, ¢)

declare t < thread ID queried from runtime
if t < then
declare i — L—1—t—o //index i into lag table
declare j «— L/3 —t—o0 //index j into lag table
if j <0 then
JeoJ+L
end if
c+—c—(t+o0+41)D //calculate ¢ for thread ¢
if ¢ < 0.0 then
¢« ¢+ ceil(fabs(c)/M)M //until 0 < ¢ < 1
end if
declare r «— U[i| — U[j] //new random deviate
if » < 0.0 then
r—r+1.0
end if
Uli] < r
re—r—c
if » < 0.0 then
r—1r+10
end if
do something with r
end if

3 times with different offsets into the lag table, gener-
ating L/3 or L/3+1 deviates in each call for a total of
L new random numbers. With a lag table of length
92153 and a thread block size of 64, 30720 CUDA
threads are executed in each call, 2 — 3 of which are
unused.

Both CUDA implementations are mainly useful
when the random numbers are consumed by other
device functions, in which case they never have to
be copied back to the host and often do not even
have to be stored in global memory, but only exist in
the local registers of the streaming multiprocessors.
Lag table operations usually require global memory
transactions, but if the conditions mentioned before
are adhered, then all of these can be coalesced into 1
(approach 1) or 1 — 2 (approach 2) transactions per
half-warp.

3.5 Multi-GPU - CUDA & POSIX Threads

The multi-GPU version of our approach to imple-
menting Marsaglia’s RNG in CUDA is basically the
same as its single-GPU counterpart. One pThreads
is created for every CUDA capable device in the sys-
tem. These threads are used to control the CUDA
kernel preparation and execution on the device as-
sociated to them. Instead of having to compute T
random deviates as seeds for the thread RNGs, the
host now has to generate T' x N seeds, where T is the
number of threads per device and N is the number
of devices. The multi-GPU implementation of Algo-
rithm CUDA 2 does not distribute the lag-table across
devices, but rather uses one lag-table per GPU.

3.6 Cell Processor - PS3

Implementing the lagged-Fibonacci generator on the
Cell processor requires a certain deal of consideration.
There are six separate SPEs each of which can pro-
cess a vector for four elements synchronously. Vectors
types are used to make full use of the SPEs process-
ing capabilities. Thus for each iteration, each SPE
will generate four random numbers (one for each ele-
ment in the vector).

To ensure that unique random numbers are gen-
erated, each element in the vector of each SPE must
have a unique lag table. Six SPEs with four elements

per vector results in twenty-four lag tables. These
lag tables are implemented as a single lag table of
type vector float but each element of the vectors
is initialised differently. Care should be taken when
initialising these lag tables to make certain that the
lag tables do not have correlated values and produce
skewed results.

The lagged-Fibonacci generator algorithm has two
conditional statements that affect variables of vec-
tor type. These conditional statements both take
the form of if( result < 0.0) result = result
+ 1.0; (See Algorithm 1). As each element in the
vector will have a different value depending on its
unique lag table, different elements in the vector may
need to take different branches.

Algorithm 8 Pseudo-code for Marsaglia Lagged-
Fibonacci algorithm implemented on the CellBE us-
ing vectors.

declare vector float u[97]
initialise(u)
declare i — 96
declare j «— 32
declare ¢ «— 362436.0/16777215.0
declare d « 7654321.0/16777215.0
declare m «— 16777213.0/16777215.0
function uniform()
declare vector float zero <« spu_splats(0.0)
declare vector float one « spu_splats(1.0)
declare vector float result «— uli] - u[j]
declare vector float plusl < result + one
declare vector unsigned sel_mask «— result >
zero
result «— select(result, plusl, sel_mask)
uli] « result
1=1—1
if i == 0 then
1+ 96
end if
J=i—-1
if j == 0 then
Jj 96
end if
c=c—d
if ¢ < 0 then
c—c+m
end if
result «— result—spu_splats(c)
plusl «— result + one
sel_mask «— result > zero
result «— select(result, plusl, sel_mask)
return result
end function

There are two ways of overcoming this issue. The
first method is to extract the elements from the vec-
tor and process them individually. This method is
not ideal as it does not use the vector processing abil-
ity of the cell, instead the spu_sel and spu_cmpgt
instructions can be used.

The spu_cmpgt instruction will compare two vec-
tors (greater than condition) and return another vec-
tor with the bits set to 1 if the condition is true and
0 if the condition is false. The comparison is per-
formed in an element-wise manner so the bits can be
different for each element. The spu_sel can then se-
lect values from two different values depending on the
bits in a mask vector (obtained from the spu_cmpgt
instruction).

Using these two instructions the conditional
statement if ( result < 0.0) result = result +
1.0; can be processed as vectors with different
branches for each element. The pseudo-code for this
process can be seen in Algorithm 8.
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4 Performance Results

We give some detailed performance results for the
Lagged-Fibonacci generator running on multiple plat-
forms (Section 4.1) as well as a study of different gen-
erator algorithms on GPU platforms (Section 4.2.)

4.1 Multi-Platform Lagged-Fibonacci
formance

Per-

The implementations of the lagged-Fibonacci gener-
ators on different architectures have been tested by
generating 24 billion random numbers and measur-
ing the time taken. Note that we do not store these
deviates in memory as applications will typically con-
sume them as they are generated. In the performance
measures (See Table 1) the random numbers have not
been used for any purpose as the only intention was
to measure the generation time. This is obviously not
useful in itself but it is assumed that any application
generating random numbers such as these will make
use of them on the same device as they were gen-
erated. Otherwise the random values can simply be
written to memory and extracted from the device for
use elsewhere.

Table 1: Comparison of the time taken to gener-
ate 24,000,000,000 random numbers using the lagged-
Fibonacci generator on different hardware architec-
tures. The CUDA measurements are done on a
GeForce GTX295.

| Device | Time (seconds) [ Speed-up |
CPU 256.45 1.0x
pThreads 66.72 3.8x
TBB 95.40 2.7x
Cell 23.60 10.9x
CUDA 1 (1 GPU) 8.56 30.0x
CUDA 1 (2 GPUs) 131 50.5%
CUDA 2 (1 GPU) 15.44 16.6x
CUDA 2 (2 GPUs) 8.33 30.8x

The platform we have used for all performance
experiments except for the CellBE algorithms runs
the Linux distribution Kubuntu 9.04 64-bit. It uses
an Intel Core2 Quad CPU running at 2.66GHz with
8GB of DDR2-800 system memory and an NVIDIA
GeForce GTX295 graphics card, which has 2 GPUs
with 896MB of global memory each on board.

The platform used to run the CellBE implementa-
tions is a PlayStation 3 running Yellow Dog Linux 6.1.
It uses a Cell processor running at 3.2GHz, which
consists of 1 PowerPC Processor Element and 8 Syn-
ergistic Processor Elements, 6 of which are available
to the developer. It has 256 MB of system memory.

The results show that the concurrent implemen-
tations all perform well compared to the single-core
CPU implementation. This comes as no surprise, as
all threads and vector units execute independently
from each another, using different lag tables and gen-
erating multiple streams of random numbers. The
only exception to this is implementation CUDA 2,
which generates a single stream of random numbers
per GPU using a very large lag-table. The initial set-
up time is insignificant compared to the time taken
to generate 24 billion random numbers.

4.2 Multi-Algorithm GPU Performance

In this section we focus on the GPU and report on
the relative performance of different algorithms and

the use of multiple GPUs. First we compare imple-
mentation CUDA 1 of the lagged-Fibonacci random
number generator on different graphics devices, using
1, 2 or 3 GPUs and 3 different lag-table sizes to gen-
erate 24 billion random numbers in total. The results
are given in Table 2. The algorithm scales almost lin-
early with the number of GPUs, which is not further
surprising as the devices work independently and do
not need to exchange any information. The GT200
series based devices show a significant performance
drop when the lag-table size is increased, while the
GTX480 is much less affected thanks to its improved
memory hierarchy.

Table 2: Comparison of the time taken to generate
24,000,000,000 random numbers using implementa-
tion CUDA 1 of Marsaglia’s lagged-Fibonacci RNG
with lag-tables of size 97, 1021 and 4093 on various
CUDA devices. The timing results are reported in
seconds.

. Lag-table size
Device | GPUs |—5= [ 1021 | 4093
GTX260 | 1 [7.67] 7.98 | 891
QTX260 | 2 | 3.87| 4.16 | 5.08
QTX260 | 3 |269| 297 | 3.85
GTX295 | 1 | S8.56 | 8.82 | 9.50
QTX295 | 2 | 431 455 | 5.27
GTX480 | 1 | 4.21 | 436 | 4.31
GTX480 | 2 |212] 217 | 2.19

The second performance comparison puts our im-
plementation of Marsaglia’s RNG (CUDA 1) up
against the algorithms Ran, Ranql, Ranq2, Ranhash
and Ranlim32 as described in Numerical Recipes 3rd
edition (Press et al. 2007). The CUDA implementa-
tions of these RNG algorithms are straight forward
and basically the same as the sequential CPU imple-
mentations. Each CUDA thread uses its own RNG
instance and thus generates an independent stream of
random numbers just like algorithm CUDA 1.

Two scenarios are used to compare the perfor-
mance of these algorithms: (a) Generate 30.72 bil-
lion uniform deviates using 30720 threads and mea-
sure the execution time (lower is better); (b) Run
an Ising simulation implemented in CUDA (Hawick
et al. 2009) with 40962 cells for 16384 simulation steps
and measure the hits per second (higher is better).
The Ranhash algorithm is not well suited for the Ising
simulation and has therefore not been used for those
tests. Algorithm 9 describes how the different RNG
implementations were tested for scenario (a). The
results are given in Table 3.

5 Discussion

As indicated in table 3 the generator algorithms we
have employed can be implemented so that they pro-
vide broadly similar performance on a typical GPU.
Other things being equal we therefore would be drawn
to choose a quality algorithm that has been well
tested, and employed and reported in the research
literature. The Lagged-Fibonacci algorithm is our
favourite for this purpose, but it can be configured
with various different lag-table sizes to improve the
deviate quality.

The lag-table size that we have employed for algo-
rithms like the Lagged-Fibonacci generator has a rel-
atively marginal effect in slowing down the GPUs. A
larger table obviously requires greater processing, but
the memory utilisation itself is more likely of greater
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Table 3: The performance results for two test scenarios using different RNG implementations. Lower results
are better in the first scenario and higher results are better in the second one. A GTX295 has been used for

these measurement.

’ Performance Results

\ Ran \ Ranq?2 \ Ranql \ Ranhash \ Ranlim32 \ Marsaglia ‘

Generate 10% uniform deviates per thread

or 30.72 billion in total (seconds) 9.95

5.74 5.94 7.67 6.22 10.70

Ising simulation (10Y hits per second) 2.15

3.16 3.12 N/A 3.23 2.26

Algorithm 9 This pseudo-code describes how the
performance of the different RNG algorithms was
measured. A RNG running on the host is initialised
with a single seed and then used to generate the seeds
for the CUDA RNGs, which are stored in s, before the
CUDA kernel is called. rng params is a place-holder
for all algorithm specific parameters. Every thread
sums the random numbers that it generates and fi-
nally stores the value to global memory to avoid code
from being removed during the compiler’s optimisa-
tion phase.

tid « thread ID queried from CUDA runtime
if tid < THREAD_COUNT then
//init. the RNG stream with its individual seed
initialise(tid, s[tid], rng_params)
params « load rng_params from global memory
z 0.0
for i€ {1,2,3,...,1000000} do
x «— 2+ generate_uniform(params)
end for
rng_params «— save params to global memory
results[tid] < x //store x to global memory
end if

impact on simulations where GPU device memory is
at a premium. This is particularly critical on the
“gamer standard” GPUs we have employed in this
work since current generation models typically have
only around 1GByte of such device memory compared
with “blade level” GPU products that have several
times this amount.

The monotonic performance improvements we ob-
tain on GPUs of increasing numbers of cores suggests
an optimistic future for data parallelism on this ar-
chitecture. AT the time of writing GPUs of approxi-
mately 27 cores are available and we believe the tech-
nology will readily support 2°-212 cores in the foresee-
able future. We believe clusters using GPUs are al-
ready feasible, and it may even be beneficial to incor-
porate more than one GPU device per cluster node.
This is certainly of use for applications where the
work can be divided up into independent tasks. For
other areas however, it may be more useful to allocate
a specific accelerator device solely to producing ran-
dom numbers. The CellBE architecture (if not this
particular chip itself) shows some promise for that
paradigm.

A particular application of interest for us is the
Ising model(Onsager 1944) as described in (Hawick
et al. 2009). It is notoriously difficult and compu-
tationally expensive to obtain high accuracy on crit-
ical parameters such as the critical temperature in
the case of the three dimensional Ising system(Baillie
et al. 1992). We are investigating how the criti-
cal temperature shifts when the underpinning lattice
structure is changed according to a Watts-Strogatz
re-wiring probability p(Hawick & James 2006). It
is proving necessary to investigate p on logarithmic
scales making the computational requirements even
more severe. Using a portable generator such as the

Lagged-Fibonacci algorithm that works well on all
platforms available to us is very important to the
computational feasibility of such numerical simula-
tion problems. The Ising model is so important, that
we have in fact used “Ising model Monte-Carlo Hits
per second” as a performance metric of the random
number generator algorithms — as presented in ta-
ble 3.

We have not reported on FPGA(Danese et al.
2007) performance data nor on low-power commodity
mobile devices such as ARM processor(Sloss 2010).
It is possible to devote programmable array die-space
to 64-bit operations and some ARMs can indeed per-
form 64-bit floating point. At least at the time of
writing and perhaps for some few years to come, the
present transient generation of devices will not neces-
sarily be able to perform 64-bit operations at a com-
modity price regime and therefore the issues we have
discussed about portability on 32-bit devices will re-
main valid.

6 Conclusions and Future Work

We have explored the portability and performance of
various random number generators on different ac-
celerator devices using variety of parallel program-
ming frameworks. The data-parallelism of the GPU
architecture is particularly attractive for the Monte
Carlo work we have focused on. While random num-
ber generation is surely still an area where the “horses
for courses” argument applies, depending upon appli-
cation context, we do believe the Marsaglia lagged-
Fibonacci generator with suitable lag-table size is still
a worthy portable candidate suited for use in quality
Monte Carlo studies.

For future work we believe hybrid processor archi-
tectures such as the CellBE are interesting and will
offer good specialist pipelining capabilities — such as
generating random numbers. However at the time
of writing we believe the software toolset available
to help program such devices places quite high bur-
dens on the applications programmer. While CUDA
is not totally trivial it is certainly more application
friendly, and we do expect its programming models
to propagate further into systems like OpenCL. The
number of cores available on GPUs continues to in-
crease. There is scope for further work in tuning the
thread block sizes to suit particular GPU devices with
higher numbers of cores.

We have shown that some work is necessary to im-
plement the various algorithms on different platforms
but that CUDA’s similarities to C/C++ syntax does
make this feasible. OpenCL holds some promise for
portability although we have not reported on detailed
performance data since at present the OpenCL plat-
forms available to us are far out-stripped by CUDA.
We do expect this situation will change as more ven-
dors take OpenCL up. However, since RNGs tend to
make use of low-level computational facilities such as
bit operations, and would usually be written to take
advantage of any vector or pipeline facilities available,
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it is not clear whether OpenCL level portability will
be enough.

In summary, we believe that at the time of writ-
ing, the Marsaglia Lagged-Fibonacci algorithm op-
erating using single precision floating point is both
portable across the devices we discuss and is readily
implementable using the software technologies avail-
able - with suitable care and attention. The per-
formance attainable multi-GPU data-parallel threads
within the context of multiple conventional threads or
processes of a multi-gpu cluster is particularly encour-
aging. This is our platform of choice for our current
Monte-Carlo work, with the caveat of requiring suit-
able care and caution about seed initialisation and
effective periodicity issues.
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Abstract

Scientific simulations can produce enormous amounts
of data, making the analysis of results and manage-
ment of files a difficult task for scientists. The sim-
ulation management and analysis system (Smaash)
described here is designed to allow scientists to easily
capture, store, organize, monitor, and analyze simula-
tion results. The system is automatic, standardized,
and secure. Smaash was built using open-source tools
and modularized to be independent of the scientific
simulation. The web-based front-end allows the sci-
entist to easily interact with the data, and has proved
its usefulness in improving the efficiency of a scientific
team’s workflow.

Keywords: Data-intensive, scientific workflow man-
agement, FLASH astrophysical code

1 Introduction

High performance parallel computing allows scien-
tists to solve complex physical problems through com-
puter simulation. However, the massive amounts of
data generated and the complex computing environ-
ment can create additional complications. A recent
review by Ludéscher et al.(2009) describes how sci-
entific workflows can assist scientists in extracting
knowledge from these data-intensive operations by
automating components within pipelines. Within the
fusion community, Klasky et al.(2008) and colleagues
have developed a system that handles the storage
management, data movement, metadata generation
and management, and a means to analyze the results.
In response to scientists’ needs, a simulation manage-
ment and analysis system (Smaash) was developed at
the University of Chicago and Argonne National Lab-
oratory (USA). Smaash provides an integrated way to
monitor simulations and analyze computational re-
sults; catalog, store, and retrieve simulations; and
prepare output for publications. The system is inde-
pendent of the particular simulation code, accessible
from many HPC and browser-based platforms, and
built around open-source software tools. Data secu-
rity and provenance is considered throughout. The
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analysis components are hidden behind a web-based
front end, enabling scientists to focus on their results
and not get bogged down by information overload.

2 Typical Data Requirements — FLASH code

The FLASH multiphysics adaptive mesh refinement
code developed at the University of Chicago (Dubey
et al., 2009) provided prototype data, and the astro-
physicists of the Flash Center provided essential feed-
back to Smaash developers about analysis needs and
scientific workflows. Typical scientific applications of
the code include weakly-compressible turbulent flows
(Fisher et al., 2008) and detonation of Type 1A su-
pernovae (Jordan IV et al., 2008). The initial appli-
cation is a set of parameter studies of Type 1A su-
pernovae explosions which were calculated on the un-
classified Purple HPC system at LLNL and the IBM
BlueGene/P HPC system at Argonne National Lab.

A typical simulation of this three-dimensional
physical system requires eight linked runs, or restarts,
of 12 wall-clock hours each, which progressively cover
only a few seconds of simulation time. Calculated on
thousands of cores, the output might have: 90 large
result files at 34GB each; 600 smaller analysis files
at 9 GB each; log files recording integrated physi-
cal results and computational progress; and affiliated
processing and visualization results. Total storage for
one run may require eight terabytes of disk space; the
parameter study required 16 of these complete simu-
lations. The management of the data produced in this
scientific study could be overwhelming for researchers
who are primarily interested in abstracting physical
insights from the computational results. Moreover,
because of the limited availability of these HPC sys-
tems, the computed data must be carefully preserved
and provenance understood.

3 Smaash Components

Smaash consists of three main parts: a back-end to
capture, store, verify, and monitor simulation; a front-
end designed for the scientists’ needs; and a database.
The front- and back-ends have modular components,
allowing easy extensibility. The database is designed
to be independent of the simulation code output for-
mats and research genre.

The first step in the Smaash back-end is to auto-
matically capture the data being generated and store
it securely in the database. The archiving pipeline
starts with a Collector which tracks the simulation
progress through the simulation code’s log file, and
launches dynamically-loaded tools to record informa-
tion into the database about each individual output
type being generated. Next, the Archiver automates
the transfer of files on the local filesystem into long-
term mass storage, additionally storing details about
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the provenance in the database. The Verifier main-
tains the accuracy of the database, and the Associ-
ator keeps related analyses, such as post-processing
results, connected to the original simulation results.
The Observer monitors these back-end processes, and
emails the user of significant changes. This program
frees scientists from tending a lengthy simulation by
being tied to a terminal, and allows efficient use of
allocated computer processing time.

The back-end tools generally run on the same HPC
system as the concurrent simulation, but on sepa-
rate processors to avoid degrading simulation perfor-
mance. They are robust and can recover from fatal
conditions, and communicate securely.

3.1 User Interfaces

The control interface for Smaash is web-based and
allows computational scientists to manage most post-
processing and analysis from a web browser distant
from the HPC system. Two primary front-end com-
ponents are the Tree View, which hierarchically organ-
ises simulation sets, and the GraphView which shows
visual details of simulation progress and provides easy
access to data output. Figure 1 shows the TreeView in
action, where multiple users can keep track of cascad-
ing simulations and their restarts. Figure 2 displays
a user-definable concise window into the enormous
quantity of data created by two simulations.

Weicome, John. Change password/ Log out f1th January 2010 02:48 -0600
O ——
Filter by Date Fiter by Tag Filter by Site
Before: 772072009 | Flameubble lipa
Ater: 29008 || Mo frank
mass study
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Name Date  Tags Dim
T e e ey G i
 Multiple Bubbes [51 20093:31 Multple bubbles experiments
 8km 63 126078 m13es 1 [76] 200906-20 \ @ 16xi6xt6 Cal Jordan
 8km 63 126068 mi3es 1[75] 200906-20 WD_cet @ texiexts Cal Jordan
 8km 63 128048 m1365 1[70 20090315 WD_cet @ texiexts Cal Jordan
 8km 63 128058 m13es 1[73] 200904-01 WD_cet @ texiexts Cal Jordan
~Bm_multi 63 1280188 m1365 1[721  2009-03-18 muliple buobles WD_def 1.365 solar mass, 63 bubbies, .. ) 161616 Lynn Reid
 rundi 00013851 20090318 WD_def Al on fntrepic-50/ @ 16x16x16 Ly Rei
 rundic 0002 13871 20090319 WD_cef 1.14 10 1.737 secs Bkm_mul.. ) 16x16x16 Lynn Rk
 rundic 0003 [389] 20090319 \ @ 16x16x16 Lynn R
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Figure 1: Web interface to the TreeView, showing
multiple restarts in a single simulation.

Figure 2: Web interface to the GraphView of two sim-
ulations, showing integral physical parameters plot-
ted against simulation time. Curve coordinates are
displayed on the right.

Other interfaces help the user keep track of sim-
ulation progress and do quick data analysis, such
as the Visualizer pipeline, which provides graphical
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snapshots of physical states over time. Summary
web pages detail the accumulated information in the
database and allow user annotations, while the robust
URL feature of the graph pages allows a science group
to share up-to-date notes through a wiki page.

3.2 Implementation

Smaash is designed to be easily adapted to a new
scientific simulation framework by using modular-
ity and standardization. Soft constraints encourage
users to enter meaningful descriptions, and maintain
data provenance. Off-the-shelf open-source tools such
as MySQL, Django/Dojo/Dojango, and Matplotlib
allow rapid development, extensibility, and provide
well-considered security protocols. The Smaash de-
velopment team is actively looking for new collabora-
tions which would benefit from the integrated man-
agement and analysis tools described here.

4 Smaash in Action

The Smaash data management pipeline has greatly
improved the efficiency of the scientific team’s work-
flow. In one example, the front-end GraphView al-
lowed easy amalgamation of multiple simulations into
a clear picture showing differences in supernovae deto-
nation times. Cross-referencing to the TreeView pro-
vided the means to pinpoint and extract crucial files
for further analysis. In another computer science ex-
ample, the FLASH programming team was able to
spot a glaring inefficiency in CPU usage by plotting
elapsed output file write times in the GraphView.
Implementing a quick programming fix improved the
use of precious allocated CPU time by forty percent.
Smaash allows the scientist to shift focus from mon-
itoring the simulation to analysing the results, while
maintaining data integrity.
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Abstract

Grid services often consist of remote sequential or
rigid parallel application executions. However, mold-
able parallel applications, linear algebra solvers for
example, are of great interest but requires dynamic
tuning which has mostly to be done interactively if
performances are needed. Thus, their grid execution
depends on a remote and transparent submission to
a possibly different batch scheduler on each site, and
means an automatic tuning of the job according to
the local load.

In this paper we study the benefits of having a
middleware able to automatically submit and reallo-
cate requests from one site to another when it is also
able to configure the services by tuning their num-
ber of processors and their walltime. In this con-
text, we evaluate the benefits of such mechanisms on
two multi-cluster Grid setups, where the platform is
either composed of several heterogeneous dedicated
clusters, or non dedicated ones. Different scenarios
are explored using simulations of real cluster traces
from different origins.

Results show that a simple method is good and
often the best. Indeed, it is faster and thus can take
more jobs into account while having a small execution
time. Moreover, users can expect more jobs finishing
sooner and a gain on the average job response time
between 10% and 40% in most cases if this realloca-
tion mechanism combined to auto-tuning capabilities
is implemented in a Grid framework. The implemen-
tation and the maintenance of this heuristic coupled
to the migration mechanism in a Grid middleware is
also simpler because less transfers are involved.

Keywords: batch schedulers; computational grids;
meta-schedulers; moldable tasks; reallocation

1 Introduction

In order to meet the evergrowing needs in computing
capabilities of scientists of all horizons, new comput-
ing paradigms have been explored including the Grid.
The Grid is the aggregation of heterogeneous comput-
ing resources connected through high speed wide area
networks.
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Computing resources are often parallel architec-
tures managed by a local resource manager, called
batch scheduler. In such a case, the local submission
of a job requires at least a number of processors and
a walltime. The walltime is the expected execution
time for this job, given by the user or computed using
data mining techniques. In most local resource man-
agement systems, when the walltime is reached, the
job is killed, so users tend to over-evaluate the wall-
time to be sure that their job finishes its execution.
Furthermore, giving an estimation of the execution
time of a job is not an easy task and is influenced by
the number of processors, which is generally chosen
depending on external parameters such as the clus-
ter load. Errors made at the local resource level may
have a great impact on the global scheduling as shown
by Beltrdn & Guzmén (2009). Errors can come from
mistakes on the walltime as well as a burst of submis-
sion as shown by Sonmez et al. (2009). Thus, having a
mechanism to accommodate bad scheduling decisions
is important.

The context of this work, described in detail
by Caniou et al. (2010b), takes place in a heteroge-
neous multi-cluster Grid connected through a high
bandwidth network: We propose a reallocation mech-
anism that takes into account scheduling errors by
moving waiting jobs between clusters. The mech-
anism we propose can be used to connect different
clusters together while each cluster keeps its local
scheduling or resource allocation policies. Each job
submitted onto the platform is executed automati-
cally without any intervention from the user.

Two reallocation algorithms are studied with two
heuristics each. We evaluate each couple (algorithm,
heuristic) by comparing them on different metrics
to an execution where reallocation is not performed.
We extend the simulations realized by Caniou et al.
(2010a) by focusing on moldable tasks instead of par-
allel rigid tasks. The middleware is able to determine
the number of processors and the walltime automat-
ically for each task. Furthermore, we study the al-
gorithms on dedicated platforms as well as non dedi-
cated platforms. We aim at showing the expectations
in terms of performance with regard to the increased
complexity of the jobs management done by the mid-
dleware. We analyze the results on different metrics,
and we show that obtained gains are very good in the
majority of the simulations we perform. Gains are
larger on dedicated platforms than on non dedicated
platforms. We show that in most cases reallocating
jobs will let jobs to finish sooner and diminish their
average response time between 10% and 40%. Fur-
thermore, results definitely confirm the counter intu-
itive fact that even for moldable jobs, whose number
of processors varies if migrated, the simplest heuris-
tic, both algorithmically and in implementation com-
plexity, is the best to use. Results presented in
this work are only for heterogeneous platforms. A
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more complete analysis, with results for both homo-
geneous and heterogeneous platforms, each with dif-
ferent batch scheduler policies, is available in research
report (Caniou et al. 20100).

The remainder of the paper is as follows. In Sec-
tion 2, we present related work. In Section 3 we
describe mechanisms and the scheduling algorithms
used in this work. Then we explain the experimental
framework in Section 4, giving information about the
simulator we developed, on the platforms simulated
with real-world traces, scenarios of experiments that
were conducted as well as the metrics on which re-
sults are compared in Section 5. Finally we conclude
in Section 6.

2 Background

Parallel applications are characterized by Feitelson
et al. (1997) as rigid, moldable or malleable. A rigid
application has a fixed number of processors. A mold-
able application can be executed with different num-
ber of processors, but once the execution started, this
number can not change. Finally, the most permissive
applications are malleable. The number of processors
used can be modified “on the fly” during execution.

Cirne & Berman (2002) use moldable jobs to im-
prove the performance in supercomputers. The user
provides the scheduler SA with a set of possible re-
quests that can be used to schedule a job. Such a
request is represented by a number of processors and
a walltime. SA chooses the request providing the ear-
liest finish time. The evaluation of SA is done using
real traces from the Parallel Workload Archive and
their results show an average improvement on the re-
sponse time of 44%, thus justifying the use of mold-
able jobs instead of rigid ones. In our work, we use the
same kind of technique to choose the number of pro-
cessors and the walltime of jobs. However, the user
does not provide any information. The middleware
is able to automatize everything thus facilitating the
user’s actions and can choose to migrate jobs from on
site to another one.

Guim & Corbalan (2008) present a study of dif-
ferent meta-scheduling policies where each task uses
its own meta-scheduler to be mapped on a parallel
resource. Once submitted, a task is managed by the
local scheduler and is never reallocated. In order to
take advantage of the multi-site environment consid-
ered in our work, we use a central meta-scheduler to
select a cluster for each incoming task because we
place ourselves in the GridRPC context where clients
do not know the computing resources. Also, once a
task is submitted to the local scheduler, our approach
let us cancel it and resubmit it elsewhere.

Yue (2004) presents the Grid-Backfilling. Each
cluster sends a snapshot of its state to a central sched-
uler at fixed intervals. Then the central scheduler
tries to back-fill jobs in the queue of other clusters.
The computation done by the central scheduler is
enormous since it works with the Gantt chart of all
sites. All clusters are homogeneous in power and size.
In our work, the central scheduler is called upon ar-
rival of each job in order to balance the load among
clusters. During the reallocation phase, it gathers
the list of all the waiting tasks and asks the local
schedulers when a job would complete, but it does
not, perform complex computations. Furthermore, in
our work, clusters are heterogeneous in size and power
and we consider moldable jobs.

Huang et al. (2009) present a study of the benefits
of using moldable jobs in an heterogeneous computa-
tional grid. In this paper, the authors show that using
a Grid meta-scheduler to choose on which site to ex-
ecute a job coupled with local resource management

schedulers able to cope with the moldability of jobs
improves the average response time. In our work, in-
stead of letting the local schedulers decide of the num-
ber of processors for a job, we keep existing infras-
tructure and software and we add a middleware layer
that takes the moldability into account. Thus, our
architecture can be deployed in existing Grids with-
out modifications of the existing. Furthermore, this
middleware layer renders reallocation between sites
possible.

3 Task Reallocation

In this section, we describe the proposed tasks real-
location mechanism. First, we present the architec-
ture of the Grid middleware (Section 3.1). Then we
present the different algorithms used for the tasks re-
allocation (Section 3.2).

3.1 Architecture of the Middleware

Caniou et al. (2010b) describe the architecture that
we use in this work. It is very close to the
GridRPC (Seymour et al. 2004) standard from the
Open Grid Forum!. Thus it can be implemented in
GridRPC compliant middleware such as DIET (Caron
& Desprez 2006) or Ninf (Sato et al. 1997). Because
such a middleware is deployed on existing resources
and has limited possibilities of action on the local
resource managers, we developed a mechanism that
only uses simple queries such as submission, cancel-
lation, and estimation of the completion time.

The architecture relies on three main components:
the client has computing requests to execute, and
contacts an agent in order to obtain the reference of
a server able to process the request. In our proposed
architecture, one server is deployed on the front-end
of each parallel resource, in which case it is in charge
of interacting with the batch scheduler to perform the
submission, cancellation or estimation of the comple-
tion date of a job. The server is also in charge of
deciding how many processors should be used to exe-
cute the request, taking into account the load of the
parallel resource. Benefiting from servers estimations,
the agent maps every incoming requests using a MCT
strategy (Minimum Completion Time (Maheswaran
et al. 1999)), and decides of the reallocation with a
second scheduling heuristic.

The process of submission of a job is depicted in
Figure 1. 1) When a client wants to execute a request,
it contacts the agent. 2) The agent then contacts each
server where the service is available. 3) Each server
able to execute the request computes an estimation of
the completion time and 4) sends it back to the agent.
5) The agent sends the identity of the best server to
the client which then 6) submits its request to the
chosen server. 7) Finally, the server submits the task
to the batch scheduler of the cluster. 8) When the
agent orders a server to reallocate a task, the latter
submits it to the other server provided by the agent.

3.2 Algorithms

This section presents the algorithm used to decide of
the number of processors and walltime for each task
(Section 3.2.1), the two versions of the reallocation
mechanism (Section 3.2.2), and the scheduling heuris-
tics used for reallocation (Section 3.2.3).

“http://www.ogf .org
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Figure 1: Architecture of the middleware layer for
reallocation.

3.2.1 Tuning Parallel Jobs at Submission
Time

The choice of the number of processors and walltime
is done by the server each time a request arrives, ei-
ther for the submission of a job or for an estimation
of completion time. To determine the number of pro-
cessors to allocate to the job, the server performs sev-
eral estimations with different number of processors
and returns the best size, i.e., the one giving the ear-
liest completion time. To estimate the completion
time, the server can directly query the batch sched-
uler (but this capability is generally not present) or
have it’s own mechanism to compute the estimated
completion time by simulating the batch algorithm
for example.

The simplest idea to obtain the best size for the
job is to perform an exhaustive search: For all possi-
ble number of processors (from one to the number of
processors of the cluster), the estimation method pro-
vides a completion time as regard to the current load
of the cluster. This method is simple and will choose
the best size for jobs, however, it is time consuming.
Indeed, each estimation is not instantaneous. Thus,
for a large cluster, the estimation must be done a lot
of times and the finding of the number of processors
can require a long time.

Sudarsan & Ribbens (2010) benchmark different
sizes of the LU application from the NAS parallel
benchmarks?. Their study show a strictly increasing
speedup up to 32 processors (adding processors al-
ways decreases execution time). But after this point,
the execution time increases. It is due to the compu-
tation to communication ratio of the job becoming too
small. This kind of job is not uncommon, thus we con-
sider moldable jobs with strictly increasing speedups
until a known number of processors.

Thus, in order to improve the speed in choosing
the number of processors of a task, we can restrict
the estimation from one processor to the limit of pro-
cessors of the job. For jobs that don’t scale very well,
this will greatly reduce the number of calls to the esti-
mation method thus reducing the time needed to find
the most suitable number of processors.

Because of the hypothesis that speedup is strictly
increasing until a maximum number of processors, we
propose to perform a binary search on the number of
processors to find how many of them to allocate to
the job. Instead of estimating the completion time
for each possible number of processors, we start by

2h‘ctp ://www.nas.nasa.gov/Resources/Software/npb.html

estimating the time for 1 processor and for the maxi-
mum number of processors. Then, we perform a clas-
sical binary search on the number of processors. This
reduces the number of estimations from n to logan.

In particular cases the binary search will not pro-
vide the optimal result because of the back-filling. Let
us consider an example in order to illustrate this be-
havior. Consider a cluster of 5 processors and a job
needing 7 minutes to be executed on a single proces-
sor. With a perfect parallelism, this jobs needs 3.5
minutes to run on 2 processors, 2.33 on 3, 1.75 on 4
and 1.4 on 5. Upon submission, the cluster has the
load represented by hatched rectangles in Figure 2.
First, the binary search evaluates the completion time
for the job on 1 and 5 processors (top of the figure)
and obtains completion times of 7 and 7.4 minutes
respectively. Then, the number of processors is set to
3 (middle of 1 and 5). The evaluation returns a com-
pletion time of 7.33 (bottom left of the figure). The
most promising completion time was obtained with 1
processor, thus the binary search looks between 1 and
3. Finally, the best completion for the tested values
time is obtained for 2 processors: 6.5 minutes (bot-
tom right). However, the best possible completion
time the job could have is 1.75 minutes with 4 pro-
cessors. Indeed, with 4 processors, the jobs can start
as soon as submitted, but this value was disregarded
by the binary search. During our tests to verify the
behavior of the binary search on thousands jobs, the
results were the same as the exhaustive search which
means that the “bad” cases are rare.

Processors
T
Processors
T
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| | |
time time

Processors
T
W
Processors
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Figure 2: Estimations made by the binary search.

If the maximum number of processors of a job is
large, using the binary search reduces enormously the
number of estimations to do, potentially by orders of
magnitude. For example, if a job can be executed
on 650 processors the exhaustive search performs 650
estimations of completion time and the binary search
performs only 10. The binary search in this case is
thus 65 times faster.

3.2.2 Reallocation Algorithms

The first algorithm, regular, works as follows: It
gathers the list of all jobs in the waiting queues of
all clusters; it selects a job with a scheduling heuris-
tic; if it is possible to submit the job somewhere else
with a better estimated completion time (ECT) of
at least a minute, it submits it on the other cluster
and cancels the job at its current location; finally, it
starts again with the remaining jobs. The one minute
threshold is here to consider some small data transfer
that can take place, and to diminish the number of
reallocations bringing almost no improvement.

To have a better idea of what is done, consider an
example of two batch systems with different loads (see
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Figure 3). At time ¢, task f finishes before its wall-
time, thus releasing resources. Task j is then sched-
uled earlier by the local batch scheduler. When a re-
allocation event is triggered by the meta-scheduler at
t1, it reallocates tasks h and ¢ to the second batch sys-
tem because their expected completion time is better
there. To reallocate the tasks, each one is sequentially
submitted to the second batch and canceled on the
first one. In this example, the two clusters are identi-
cal so the tasks have the same execution time on both
clusters, and the tuning of the parallel jobs (choice of
number of processors to allocate to task h and i) is
the same due to the same load condition. In an het-
erogeneous context, the length and even the number
of processors allocated to the tasks would change be-
tween the clusters. Note that a task starting earlier
on a cluster does not imply that it will also finish
earlier.
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Figure 3: Example of reallocation between two clus-
ters.

The second algorithm, all-cancellation, starts by
canceling all waiting jobs of all clusters. The agent
keeps a reference for all jobs. Then, it selects a job
with a scheduling heuristic. Finally, it submits the job
to the cluster giving the minimum estimated comple-
tion time and loops on each of the remaining jobs.

Note that it does not mean that all parallel jobs
will be tuned in the maximum of their performance
since platforms are not necessarily dedicated to the
Grid middleware, each cluster has its own load. It
may be better to use less resources, thus have a longer
execution time, but start earlier.

The reallocation event in both versions of the al-
gorithm is triggered periodically every hour, based
on previous works conducted by Caniou et al. (2009)
where a smaller period did not change the results but
required more network transfers and potentially more
reallocations.

Because both reallocation algorithms use an esti-
mation of the completion time, it is mandatory that
clusters use a batch scheduling algorithm able to give
some guaranty on the completion time to guaranty
the results. Feitelson et al. (2004) present the two
main algorithms offering these guaranties are First-
Come-First-Served (FCFS) and Conservative Back-
Filling (CBF). Both algorithms make reservations for
each job and jobs can never be delayed once the reser-
vation done. However, jobs can be scheduled earlier
if new resources become available. Batch schedulers
using one of these algorithms are common. Other al-
gorithms such as Easy Back-Filling (EBF) introduced
by Lifka (1995) or the well-known Shortest Job First
(SJF) presented by Feitelson et al. (1997) do not guar-
anty a completion time and thus should not be used
without adding specialized prediction mechanisms to
the servers.

3.2.3 Scheduling Heuristics for Reallocation

We focus on two heuristics to use to select a job at
each iteration. With the first one, jobs are processed
in their submission order. In the remainder of the
paper, we refer to this policy as MCT because jobs are
submitted in their original submission order and the
jobs are submitted to the cluster with the Minimum
Completion Time (MCT).

The second policy executes the MinMin heuristic
on a subset of the jobs. MinMin asks the estimated
completion time of all jobs and selects the job with
the minimum of the returned values. In this paper,
MinMin is executed on the 20 oldest jobs. We use this
limit to avoid a too long reallocation time. Indeed,
MinMin has to update the estimations of completion
times of all the remaining jobs at each iteration to
select the job with the minimum of the ECTs. Be-
cause the all-cancellation algorithm needs to resubmit
all jobs, it executes MinMin on the 20 oldest jobs and
then the remaining jobs are processed in their original
submission order, leading to a MCT policy.

We have two scheduling heuristics, MCT and Min-
Min, as well as two reallocation algorithms, namely
regular and all-cancellation. Thus, we have four cou-
ples of algorithm that we refer in the remainder of
this paper as MCT-reg, MCT-can, MinMin-reg, and
MinMin-can.

4 Experimental Framework

In this section we depict the experimental frame-
work by presenting the simulator we implemented to
run our experiments (Section 4.1), the description of
the jobs (Section 4.2), the simulated platforms (Sec-
tion 4.3), and the metrics used to compare the heuris-
tics (Section 4.4). Finally, the experiments are de-
scribed (Section 4.5).

4.1 Simulator

In order to simulate task reallocation in a distributed
environment composed of several clusters, we use
SimGrid (Casanova et al. 2008), a discrete events
simulation toolkit designed to simulate distributed
environments, and Simbatch (Caniou & Gay 2009),
a batch systems simulator built on top of SimGrid.
Simbatch, which has been tested against real life ex-
periments, can simulate the main algorithms used in
batch schedulers described by Feitelson et al. (2004).
In this study, we use the Conservative Back-Filling
(CBF) algorithm for the batch schedulers. Mu’alem
& Feitelson (2001) introduces the CBF algorithm.
It tries to find a slot in the queue (Back-filling)
where the job can fit without delaying already sched-
uled jobs (Conservative). If it does not, the job is
added at the end of the queue. CBF is available in
batch systems such as Maui (Jackson et al. 2001),
Loadleveler (Kannan et al. 2001), and OAR (Capit
et al. 2005) among others.

The simulator is divided using the same compo-
nents as the ones in the GridRPC standard intro-
duced in Section 3.1:

The client requests the system for a service execu-
tion. It contacts the meta-scheduler that will answer
with the reference of a server providing the desired
service.

The meta-scheduler matches incoming requests to
a server according to a scheduling heuristic (we use
MCT in this paper) and periodically reallocates jobs
in waiting queues on the platform using one of the
reallocation scheduling heuristic described in Sec-
tion 3.2.3.
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The server is running on the front-end of a clus-
ter and interacts with the batch system. It receives
requests from the client and can submit jobs to the
batch scheduler to execute the requests. It can also
cancel a waiting job, return an estimation of the com-
pletion time of a request and return the list of jobs in
the waiting state. For submission and estimation, the
server uses an estimation function that automatically
chooses the number of processors and the walltime
of the request using the technique described in Sec-
tion 3.2.1.

4.2 Jobs

We built seven scenarios of jobs submission, where
for six of them, jobs come from traces of different
clusters on GRID’5000 for the first six months of 2008.
Table 1 gives the number of jobs per month on each
cluster. The seventh scenario is a six month long
simulation using two traces from the parallel workload
archive (CTC and SDSC) and the trace of Bordeaux
on GRID’5000. The trace from Bordeaux contains
74647 jobs, CTC has 42873 jobs and SDSC contains
15615 jobs. Thus, there is a total of 133135 jobs. In
the remainder of the paper, we refer at the different
scenarios by the name of the month of the trace for the
jobs from GRID’5000 and we refer to the jobs coming
from CTC, SDSC, and GRID’5000 as “PWA-G5K”.

[ Month/Cluster [ Bordeaux [ Lyon | Toulouse [ Total |

January 13084 583 488 14155
February 5822 2695 1123 9640
March 11673 8315 949 20937
April 33250 1330 1461 36041
May 6765 2179 1573 10517
June 4094 3540 1548 9182

Table 1: Number of jobs per month and in total for
each site trace.

In our simulations, we do not consider advance
reservations (present in GRID’5000 traces). They are
considered as simple submissions so the batch sched-
uler can start them when it decides to. To evalu-
ate the heuristics, we compare simulations together so
this modification does not impact the results. How-
ever, we can not compare ourselves with what hap-
pened in reality. Furthermore, note that we add a
meta-scheduler to map the jobs onto clusters at sub-
mission time, as if a grid middleware is used. On the
real platform, users submit the cluster of their choice
(usually they submit to the site closest to them) so
the simulations already diverge from reality.

The traces taken from the Parallel Workload
Archive were taken in their standard original format,
i.e., they also contain “bad” jobs described by Fei-
telson & Tsafrir (2006). We want to reproduce the
execution of jobs on clusters, so we need to keep all
the “bad” jobs removed in the clean version of the
logs because these jobs were submitted in reality.

4.2.1 Moldable Jobs

The jobs contained in the trace files are parallel
rigid jobs. So, in order to simulate the moldable
jobs, we defined 4 types of jobs using Amdahl’s law

(speedup = m with P the fraction of parallel

code and N the number of processors). The law states
that the expected speedup of an application is strictly
increasing but the increase rate diminishes. The exe-
cution time of an application tends to the execution
time of the sequential portion of the application when
adding more processors.

To obtain the 4 types of moldable jobs, we vary
the parallel portion of the jobs that is sequential as
well as the limit of processors until the execution time
decrease. The different values for the parallel portion
of code are 0.8, 0.9, 0.99 and 0.999. Figure 4 plots
the speedups for the different values of parallel code
for different number of processors. Note that the y-
axis is log-scaled. The figure shows that there is some
point where the speedup increase becomes negligible.
For the limits, we chose to use 32, 96, 256, and 650
processors. These values were chosen in accordance
to the gain on the execution time of adding one pro-
cessor. When the gain becomes really small, chances
are that the internal communications of the job will
take most of the time and slow down the task. Fur-
thermore, the 650 limit is given by the size of the
largest cluster of our simulations. So, the 4 types of
jobs we consider are 4 couples (parallel portion, limit
of processors): ¢1:(0.8, 32), t2:(0.9, 96), ¢3:(0.99, 256)
and t4:(0.999, 650).
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Figure 4: Speedups for the Amdahl’s law for different
parallelism portions.

In the traces, there are more tasks using a small
number of processors than tasks using a lot of proces-
sors. Thus, each job from the trace files was given a
moldable type. In each simulation we present, there
are 50% of jobs of type t1, 30% of type t2, 15% of
type t3 and 5% of type t4. The type of a job is cho-
sen randomly. In order to keep a more realistic set
of jobs, we decided to keep the sequential jobs of the
traces sequential.

4.2.2 Simulating Realistic Parallel Jobs

During the simulations, the server uses information
from both the traces and the type of the job to choose
a suitable number of processors and a walltime for
the job. In order to do so, the server uses the bi-
nary search described in Section 3.2.1 to choose a
number of processors and follows the following pro-
cess to choose the walltime: First, it computes the
speedup of the job in the trace file using Amdahl’s
law, the type of the job and the number of proces-
sors: spd = amdahl(p,n;) with p the parallel portion
of the code and n; the number of processors used in
the trace file. Second, the server computes the wall-
time of the job on one processor: w; = wy,, * spd.
Third, the server computes the speedup of the job for
the current number of processors chosen by the binary
search: spd, = amdahl(p,np). Then, the server com-

putes the walltime for the job: w, = S’Z‘)’éb. Finally,

the runtime and walltime are modified in accordance

with the speed of the cluster given in Section 4.3.1.
To obtain the actual execution time for the mold-

able jobs, we keep the same difference ratio as the
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one in the trace file. Thus if the runtime of a job was
twice smaller than walltime in the trace file, it will
also be twice smaller than the walltime in the sim-
ulations, independently of the number of processors
chosen for the job.

4.3 Platform Characteristics
4.3.1 Computing Resources

We consider two sets of resources, composed of three
sites, each with a different number of cores, and man-
aged with a CBF policy.

The first set corresponds to the simulation of three
clusters of GRID’5000 (Bolze et al. 2006). The three
clusters are Bordeaux, Lyon, and Toulouse. Bordeaux
is composed of 640 cores and is the slowest cluster.
Lyon has 270 cores and is 20% faster than Bordeaux.
Finally, Toulouse has 434 cores and is 40% faster than
Bordeaux.

The second set corresponds to experiments mixing
the trace of Bordeaux from GRID’5000 and two traces
from the Parallel Workload Archive®. The three clus-
ters are Bordeaux, CTC, and SDSC. Bordeaux has
640 cores and is the slowest cluster. CTC has 430
cores and is 20% faster than Bordeaux. Finally, SDSC
has 128 cores and is 40% faster than Bordeaux.

4.3.2 Dedicated Vs. Non Dedicated

On real life sites, tasks can be either submitted by a
Grid middleware or by local users. Thus, we inves-
tigate the differences in behavior of our mechanism
depending on heuristics: on dedicated platforms,
where all tasks have been submitted through our mid-
dleware; on non dedicated platforms where two
third of the jobs issued from the traces are directly
submitted through batch schedulers by simulated lo-
cal users. Both setups will be investigated in Sec-
tions 5.1 and 5.2 for the dedicated case and for the
non dedicated platform respectively.

4.4 Evaluation Metrics

We choose the following metrics to compare the
performance of reallocation depending on platforms,
mechanisms and scheduling heuristics:

The percentage of jobs impacted by reallo-
cation is the percentage of jobs whose completion
time is changed compared to an execution without
reallocation. In this study, we are only interested by
these jobs.

We also study the number of reallocations rel-
ative to the total number of jobs. We give the
percentage of reallocations in comparison of the num-
ber of jobs. A job can be counted several times if it
migrated several times so it is theoretically possible
to have more than 100% reallocations. A small value
is better because it means less transfers.

On a user point of view, the percentage of jobs
finishing earlier with reallocation than without
is very important. This percentage is taken only from
the jobs whose completion time changed with reallo-
cation. A value higher that 50% means that there are
more jobs early than late.

Feitelson & Rudolph (1998) presents the notion
of response time. It corresponds to the duration be-
tween submission and completion. Complementary to
the previous one, the average job response time
of the jobs impacted by reallocation relatively to the
scenario without reallocation defines the average ra-
tio that the duration of a job can issue. A ratio of 0.8

3http://www.cs.huji.ac.il/labs/parallel /workload/
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means that on average, jobs spent 20% less time in
the system, thus giving the results faster to the users.

Figure 5 illustrates why jobs can be delayed and
others finishing earlier onto a platform composed of
two clusters. At time 0 a reallocation event is trig-
gered. A task is reallocated from cluster 2 to cluster
1 with a greater number of processors allocated to
it according to our algorithm. Thus, some tasks of
cluster 2 are advanced in the schedule. On cluster 1,
as expected, the task is back-filled. However, assume
the task finishing at time 6 finishes at time 2 because
the walltime was wrongly defined (see the task with
the dashed line). Thus, because of the newly inserted
task, the large task on cluster 1 is delayed. Note that,
even with FCFS, reallocation can also cause delay. If
a job is sent to a cluster, all the jobs submitted after
may be delayed. Inversely, the job that was reallo-
cated to another cluster now leaves some free space
and it may be used by other jobs to diminish their
completion time.
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Figure 5: Side effects of a reallocation.

4.5 Experiment

An experiment is a tuple (reallocation algorithm,
heuristic, platform-trace, dedicated, seed) where the
seed is used to draw the type of a job in the trace, and
concerning non dedicated platform, to draw if a job is
submitted to the middleware or directly to the local
scheduler. We used 10 different random seeds, hence,
in addition to the reference experiment using MCT
without reallocation, we conducted 14+42%*2*7*2*10,
i.e., 574 experiments in total.

5 Results

First, we present the results on dedicated platforms
in Section 5.1. Then, Section 5.2 contains the results
for non dedicated platforms. Finally, some concluding
remarks on the results are given in Section 5.3.

Figures in this section show the minimum, the
maximum, the median, the lower, and higher quar-
tiles and the average of the 10 runs of each experi-
ment. Concerning the figures in non dedicated plat-
forms, results only take into account the jobs submit-
ted to the Grid middleware. External jobs are not
represented in the plots.

5.1 Dedicated Platforms

In this section, clusters are heterogeneous in number
of processors and in speed (cf. Section 4.3). All re-
quests are done to our Grid middleware, thus there
are no local jobs submitted.

The percentage of jobs impacted is shown in Fig-
ure 6. In six experiments for the two traces March and
June, extreme cases were almost 100% of the jobs that
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were impacted by reallocation appear. This happens
when the platform has a few phases with no job. If
there are always jobs waiting, the reallocation is able
to move jobs more often thus impacting a bigger por-
tion of the jobs. Apart from these cases, the number
of jobs impacted varies between the traces from 25
to 95%. All-cancellation algorithms usually impacts
more jobs. MinMin-can impacts more jobs on average
than the other heuristics. MCT-reg and MinMin-reg
have close results.
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Figure 6: Jobs impacted on dedicated platforms.

The number of reallocations relative to the total
number of jobs is plotted in Figure 7. All-cancellation
algorithms always produce more reallocations. The
regular algorithms give results inferior than 15% so
the number of reallocations is quite small compared
to the total number of jobs. However, with the all-
cancellation algorithms, it is possible to go to a value
as high as 50%. Because all-cancellation empties the
waiting queues, more jobs have the opportunity to be
reallocated. With the regular algorithms, jobs close
to execution have a very small chance of being real-
located. The regular version of the reallocation algo-
rithm is better on this metric.
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Figure 7: Reallocations on dedicated platforms.

Figure 8 plots the percentage of jobs early. In
this case, 3 experiments produce more jobs late than
early. In April without all-cancellation there are al-
ways more jobs late (less than 4%) when reallocation
is performed. However in most cases, it is better to
reallocate. MinMin-reg gives the worst results. It is
followed by MCT-reg, then MinMin-can and finally
MCT-can is the best with up to 64% of tasks early!

Concerning the average relative response time, the
plot in Figure 9 shows a clear improvement in most
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Figure 8: Percentage of jobs early on dedicated plat-
forms.

cases. Excluding MinMin-reg, most gains are com-
prised between 10% and 40%. On average, MCT-can
is the best heuristic. The reallocation without all-
cancellation can worsen the average response time.
It happened in 6 experiments (3 with MCT-reg and
3 with MinMin-reg). The loss is small for MCT-reg
(less than 5%) thus it is not a problem. The all-
cancellation versions are always better than their cor-
responding regular algorithm except in February for
MCT-reg. Some experiments present a gain on the
average response time while there were more jobs late
than early (MCT-reg in April for example): The gains
were high enough to compensate for the late jobs.
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Figure 9: Relative average response time on dedicated
platforms.

5.2 Non Dedicated Platforms

In this section, we present the results on non dedi-
cated platforms where 33% of the jobs executed on
the Grid platform are moldable and submitted to the
Grid middleware.

The percentage of jobs impacted by reallocation is
plotted in Figure 10. The two all-cancellation heuris-
tics impact more jobs than the regular ones, but the
difference is really small. There is one experiment
in March where MinMin-reg impacts almost all jobs:
a scheduling decision taken at the beginning of the
experiment impacts all the following job completion
dates. For a given trace, the number of impacted jobs
usually does not vary a lot.

Figure 11 plots the number of reallocations relative
to the total number of moldable jobs. The number of
reallocations is very small. In most cases, there are
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Figure 10: Jobs impacted on non dedicated platforms.

only a few dozens reallocations. The all-cancellation
algorithms always reallocates more than the regular
versions, but not by far. In a lot of cases, the number
of reallocations corresponds to less than 1% of the
number of jobs. Thus, on a non dedicated platform,
the reallocation mechanism does not produce many
transfers.
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Figure 11: Reallocations on non dedicated platforms.

Most experiments except the worst case for PWA-
G5K and March with MinMin-reg result in more than
half of the jobs early as we can see in Figure 12. The
90% jobs late in March with MinMin-reg are from
the same experiment where almost all jobs were im-
pacted in Figure 10. Most experiments exhibit a per-
centage of jobs early close to 70%. All-cancellation
again produces less jobs early than regular. MCT-reg
and MinMin-reg are the two heuristics of choice, but
MinMin-reg gives mitigate results for PWA-G5K so
MCT-reg is a better choice.

Figure 13 shows that the different heuristics give
results close to one another on the relative average re-
sponse time. All-cancellation heuristics usually have
a smaller difference between the minimum and the
maximum gains. Depending on the experiment, re-
sults vary a lot. In some experiments, the average
response time is divided by more than two, but in
other it is augmented with a maximum of 40%. How-
ever on all experiments, the average gain is positive.
Thus reallocation is expected to provide a gain.

5.3 Remarks on Results

MCT-reg and MinMin-reg usually give similar results
on non dedicated platforms, often in favor of MCT-
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Figure 12: Percentage of jobs early on non dedicated
platforms.
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Figure 13: Relative average response time on non ded-
icated platforms.

reg. On dedicated platforms however, MCT-reg is
clearly better than MinMin-reg. MinMin-reg may
give better results if it is able to take more jobs into
account during reallocation. But, if it takes more jobs
into account, its execution time grows exponentially.
Furthermore, the two algorithms with all-cancellation
also give very similar results with a small advantage
for the MCT-reg on dedicated platforms.

The all-cancellation algorithms can cause starva-
tion. In a non dedicated platform, it is obvious that
starvation can happen. Indeed, when canceling jobs,
jobs from the external load (for the Grid middleware)
will be rescheduled in front of the moldable jobs man-
aged by the middleware system. This may explain the
worst cases peaks in Figure 13. Even in a dedicated
environment with MinMin-can, it is possible for a job
to be delayed indefinitely. If the job is long, it will
always be resubmitted after others and may never
start execution. However, such cases did not happen
in our simulations because there are always phases of
low load where the queues can be emptied.

The results presented in this paper show that
the heuristic of choice is MCT with or without all-
cancellation whether the platform is dedicated or not.
Indeed, MinMin is too complex in time to react in
a decent time regarding the submission rate of jobs
onto the platform. In a previous study Caniou et al.
(2010a), we used several other selection heuristics
such as MaxMin, Sufferage, MaxGain, and MaxRel-
Gain but these heuristic did not prove better than
MCT or MinMin. Because these algorithms have the
same complexity than MinMin, we argue that they
may also give poor results, especially because of worst
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cases.

In this paper, due to space constraints, we present
only results on heterogeneous platforms, since they
are the most common in real life. But results on ho-
mogeneous platforms are presented in detail in the
research report (Caniou et al. 2010b), where clusters
have different sizes, but their speed is the same. Gains
obtained by the reallocation are usually better by
a few percents on homogeneous platforms than the
one presented in this paper. The same patterns as
the ones we see in this paper emerge: on dedicated
platform, MCT-can and MinMin-can give the best re-
sults. MCT-reg produces less gains, and the worst is
MinMin-can. On non-dedicated platform, all heuris-
tics give similar results.

6 Conclusion and Perspectives

In this paper, we presented a reallocation mechanism
that can be implemented in a GridRPC middleware
and used on any multi-cluster Grid without modifying
the underlying infrastructure. Parallel jobs are tuned
by the Grid middleware each time they are submitted
to the local resource manager (which implies also each
time a job is migrated). We achieve this goal by only
querying batch schedulers with simple submission or
cancellation requests. Users ask the middleware to
execute some service and the middleware manages the
job automatically.

We have investigated two reallocations algorithms,
the key difference between them being that one, reg-
ular, cancels a task once it is sure that the expected
completion time is better on another cluster, and the
other, all-cancellation, cancels all waiting jobs before
testing reallocation. We also considered two schedul-
ing heuristics to make the decision of migrating a job
to another site. We conducted 564 experiments and
analyzed them on 4 different metrics.

On dedicated clusters, the cancellation of all the
waiting jobs proves to be very efficient to improve
the average job response time. On the other hand
in an non dedicated environment, the algorithm that
does not cancel waiting jobs behaves better. On both
platforms, surprisingly, there is not a great number
of migrating tasks, but all tasks take benefit of those
migrations since the percentage of impacted tasks is
high. In term of performances, users can expect more
jobs finishing sooner, and an improvement of the jobs
response time from a few percents to more than 50%!
Only a few cases give bad results leading to an in-
crease of the average job response time.

The next step of this work is the implementation
of the reallocation mechanism in the DIET GridRPC
middleware. DIET already provides most of the
needed features. The missing features are the can-
cellation of a job in batch schedulers (numerous are
supported) which is easy to implement and the re-
allocation mechanism itself. This last point should
be quite straightforward because all communications
are already handled by the middleware. We intend to
implement both reallocation mechanisms with MCT.
Indeed, we need the regular algorithm to work on non
dedicated platforms. We plan also to implement the
all-cancellation mechanism because DIET can be used
in a dedicated environment. Furthermore, we could
use this in the SPADES?* project where we plan to
maintain a set of reserved resources on a site which
are managed by our own embedded batch scheduler.
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Abstract we list a number of conclusions and directions for future
research.

The significance of dynamic parallel load balancing is

considered in the context of fixed parameter tractability. . :

The well known vertex cover probIFe)zm is used as a cagg A Sequential Vertex Cover Algorithm
study. Several algorithms are developed and tested on
graphs derived from real biological data. Implementations In the decisi . f . |
are carried out on the Kraken supercomputer, currently the , 1 the decision version % vertex c?yer, we reqluwe oln y
world's fastest computational platform for open science.ah yes orhno answgr. Int de case ol 'yes we also solve
We show that for certain difficult instances of biological 1€ Search version by producing a satisfying cover. To

olve the optimization version, we employ the decision
glgggraphs our approach scales well up to 2400 proce%Igorithm along with binary search to find the smallest

for which the answer is “yes.”
Keywords: parallel computation, load balancing, data
mining, genome scale analysis 21 Kerndization

FPT’s success as an algorithm design paradigm relies
largely on kernelization, a form of problem reduction that
ensures a compute core whose size depends orihyaoil
notonn (n = |V|). If (G, k) is an instance of vertex

: . cover, an effective kernelization routine produces another
tains a subseC’ of size at most so that every mem- jngiance (¢2 k'), in which &’ < k and the number of ver-
ber of £ has at least one endpoint @. Applications  tices in G’ is bounded above by some polynomial func-
are myriad, in large part because vertex cover is SO €agjon of /. (; has a cover of sizé if and only if G’ has a

ily transformed into clique and its dual (independent set) ~over of size’. Numerous kernelization procedures have

A huge number of domains are amenable (Bomze et aleen proposed (Abu-Khzam et al. 2001, Chen et al. 2001).

1999). Specific examples include bio-informatics (Samu-rsse with the most theoretical appeal tend to be the most
drala 2006), chemistry (Rhodes et al. 2003), electrical €Nzhallenging to implement, while ?r?ose with the simplest

gineering (Prihar 1956), and even social networks (LUC&;;cyre are often the most effective on real data. We

& Perry 1949). Vertex cover is fixed parameter tractable i i ati
(FPT) for every fixed: (Downey & Fellows 1999). The Pozivt?]itshgtigﬁopted only the following kernelization rules

asymptotically fastest currently known algorithm runs in
O(1.2738% + kn) time (Chen et al. 2006). _
Despite the potential efficiencies offered by FPT, ver-Rule 1 (Thedegreeonerule):

tex cover remaind/P-complete (Garey & Johnson 1990). a vertex with degree one is excluded from the cover. This

Accordingly, computational burdens are often onerousjs pecause there is no gain in including a pendant vertex to
Here we are interested chiefly in effective parallel loadyqyer its only neighbor.

balancing schemes. We shall describe our work as fol-

lows. In Section 2, we present a simple sequential FPT ,

vertex cover algorithm. Next, in Section 3, we deviseRule2 (The high degreerule):

a relatively straightforward parallel method employing a :

static form of load balancing to distribute the effort acrossAtXerEﬁi);gv g(l)lsoef ﬁg%;eieh%)éﬁgﬁggtu& ibnetr|1r(la E:Q)?/grm\;ver:i ch
processors. In Section 4, we develop a more complex bq impossible 9 '
dynamic load balancing approach. A variety of experi- P '
mental results are discussed in Section 5. In a final section In addition to the above two rules. there are kerneliza

This research has been funded by the U.S. Department of Enedgy u tion algorithms to preprocess 2—degree vertices, 3-degree
the EPSCoR Laboratory Partnership Program. It has also been support: rtices and even higher degree vertices. but they be-
by an allocation of advanced computing resources provided by the U.S . e p !

National Science Foundation. Computations were performed on Kraker](,(:omel.suc.cesswe:]y Crino.re Idgflcllﬂt to |mplement_. Otlhel’

a Cray XT5 housed at the National Institute for Computational Sciencesk€rNelization methods include linear programming algo-
Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA. rithms (Abu-Khzam et al. 2006) and crown decomposi-

) . . . tion (Abu-Khzam et al. 2001). Analyzing the performance
Copyright ©2011, Australian Computer Society, Inc. This paper ap- . g - . -
peared at the 9th Australasian Symposium on Parallel and Distribute&’f different kernelization algorlthms and |mplementat|ons

Computing (AusPDC 2011), Perth, Australia. Conferences in Researchs & broader topic that requires a separate paper. Here, we
and Practice in Information Technology (CRPIT), Vol. 118. J. ChenfOCUS our efforts on the hard computational core that ker-
and R. Ranjan, Eds. Reproduction for academic, not-for profit purposefi€lization produces, because that is where exponential run
permitted provided this text is included. time occurs.

1 Introduction

Given a graphG = < V, E > and an integek (k < n,
n = |V), the vertex cover problem asks whethiércon-
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2.2 Decomposition and search be applied during branching in subsequent recursive calls.

This is termed “interleaving” (Niedermeier & Rossmanith

After reducing the graph using the two kernelization rulespnog), which can help to reduce problem instances and
just described, the kernel should be searched for solutiongyprove algorithm performance.

In FPT terminology this step is known as “branching.”
The challenge is that the reduced problem core still might 0
have an exponential number of solution candidates. We

use a branching algorithm, which utilizes a search tree, 6
to traverse through the search space. Each branch of the
search tree represents a possible solution, and after search-
ing the tree to a certain depth, we can make a decision on 2 3 ): ¢ 5
whether that particular branch contains a solution or not.
This is an exhaustive search, and sometimes the entire so-
lution space must be searched, such as when no solution

Figure 2: An example graph

exists.

In the branching tree, each branch is a possible choice s,
for building the vertex cover. Each branch adds one or .
more vertices to the cover, ardis updated accordingly. ’ s
If the value ofk becomes zero or less than zero, a deci-

sion is made about the cover. If it is a valid cover, the
search is ceased. Otherwise, searching is resumed on an-
other branch.

Branching is illustrated in Figure 1. Letters in the
box represent the current vertex cover while the graphs
on either side show the modified graph. Black vertices
represent vertices that have been deleted, whereas white
vertices are vertices still in the graph. The neighbors of
vertexv are shown asV(v) and number of neighbors as
|N(v)|. First, vertexv is selected for the vertex cover in
the left branch, which can be seen in the left box. Then
thek value is reduced by one. The right branch contains a
choice without vertex. All edges connected to should
be covered. Therefore alV(v) should be in the vertex
cover. Thus, the right box has vertex cover withouiut
including N (v). Also, k is updated td: — | N (v)].

| Figure 3: Branching tree for graph of Figure 2, with k=4

J7 K=k-1 l k' =k - [N(v)|
O,

‘\D i 3 Parallel Vertex Cover
a. ) t,u v e £, U, N(V) .. "
®;--0 o )
O" v | I .'.' v
° -—-1 - F-b == ¢ Decomposing a graph is a computationally demanding
! il ! J operation, and thus distributing work among several pro-
cessors will help to decompose and search the graph more
Figure 1: A branching algorithm effectively. During the decomposition stage, branches

are independent of each other, therefore branches can be
9searched separately and results are reported back when the

computation is completed. The implementation has been
one using MPI (Dongarra & Walker 1994), (Gropp et al.
999) given that it is widely adopted and scales well. We
mploy a master—worker architecture, where each proces-
or is assigned an independent branch to compute.

' In Figure 4, experimental data on real biological data

in the upper right hand comer of each box is the update%raphs are shown. The data sets, related to “Folic acid

/ P / : eficiency effect on colon cancer cells,” “Low concentra-
iks Zaalllrﬁ fgﬁ tehdegrenso?nﬁ[[%% %r%%t‘ﬁ -aﬁ’e}’ ré%r\llé?eedc?g/ ?asr g'igliotions of 17beta-estradiol effect on breast cancer cell line,”

vertex cover, depicted as a box within a box. Otherwise?d ‘Interferon receptor deficient lymph node B cell re-

it is an invalid cover, depicted as a dashed-line box Withinslg%résieztgl'g)ﬂu?rnhzg 'r;;ecgg)c\’/e\r"éeg‘;e%?éad'nggrfrome'r\]lgsB;S

a box. In this example, a current highest degree vertex is | ~. d grap lati I ghg ah

selected for the vertex cover. A vertex cover is found in ¢ ces an Pearson correlation p-values as the weights

the leftmost branch, and the search can be ceased. In tigk €d9€s between all pairs of genes. The graphs were then

case where a graph might be structured in such a way th resholded using p-values (0.45, 0.40, 0.35 and 0.30) and
onverted to undirected graphs. This is done by remov-

covers are in the rightmost branches, the algorithm has t .
' : .~ Ing edges between vertex pairs that have a p-value greater
search through all left branches before reaching the rig an the threshold value. The minimum vertex cover of

side. It is important to note that kernelization can alsoeach graph was found using both the sequential algorithm

Figure 2 shows a simple graph with 7 vertices and
edges and Figure 3 shows the decomposition stegs#for
4 onthis graph. As in Figure 1, numbers in the boxes sho
the partial cover found at each branch. Graphs on eithe
side illustrate the modified graph for each branch. Dotte
lines are deleted edges, black vertices are deleted vertic
and white vertices are vertices in the graph. Thealue
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Figure 5: Processor utilization in static load balancing
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vestigated in (Kumar et al. 1994). Six receiver initiated
and three sender initiated algorithms have been discussed.
Among them, a scheduler based algorithm (receiver ini-
tiated), which was also proposed in (Patil & Banerjee
1989), is more suitable for load balancing the parallel ver-
tex cover algorithm. The sender initiated algorithm would
be a push model that is hard to implement as the working
processors finish time is unknown during execution. Also,
since our algorithms select the current highest degree ver-
tex during branching, we suspect that the leftmost branch
is the hardest branch. So for balanced process utilization,
idling processors should assist the leftmost branch.
Previously, at least two dynamic load balancing al-
; . ; ; _gorithms for parallel vertex cover have been suggested
E:gﬁéi‘l' A comparison of sequential and parallel perfor in (Abu-Khzam et al. 2006) and (Baldwin et al. 2004).
Also, load balancing has been discussed in (Taillon 2007).
Stack splitting and search frontier splitting methods,
which were introduced in (Reinefeld & Schnecke 1994)
and the parallel algorithm using a computing cluster tha@nd (Reinefeld 1994) have been discussed. The algorithm
consisted of 32 Intel 3.2GHz processors, each with 4GBliscussed in this paper is slightly different than the above
of main memory. Runs were limited to 24 hours (86400tw0 algorithms because this algorithm is tightly coupled
seconds). Table 1 summarizes the results. (The folic-3®@ith the branching tree whereas the aforementioned algo-
graph did not finish within 24 hours and the program wasfithms are more general load balancing algorithms. How-
terminated.) ever, one could define it as a variation of the stack splitting
When usingn processors for parallel algorithma; method (Relnefeld 1994), because work is partltloned on
times speedup is expected, but these experiments fall f&lemand to be delivered to the requester. The hardest in-
short of that goal. For instance, with the sequential algoStance is designated as the donor, and it is the job donating
rithm folic-35 took 29792 seconds. With 32 processors process. Therefore, the scheduler does not need to main-
it took 28502.76 seconds. So even though 96% improvetain a job queue. As we explained in the previous para-
ment in execution time was hoped, the actual executiofgraph the hardest instance occurs in the leftmost branch.
time speedup was as low as 4.3%. The process utilizaProcessors that need more jobs contact the scheduler, who
tion for the static load balancing algorithm for folic-35 is redirects job requests to the donor. Jobs are then delivered
shown in figure 5. Low throughput happens as a result of0 the requesting processor directly. This process is shown
uneven process utilization. (One processor does nearly aif the diagram in Figure 6. o
of the work.) The diagram in Figure 7 shows the termination pro-
As we have seen in Figure 4, assigning independerf€ss. The scheduler is notified when the donor runs out
branches to different processors is not always optimal, iref jobs. The scheduler then terminates the donor, and any
terms of runtime. Given that not all branches are equaProcessor requesting more work will be issued a termina-
in terms of complexity, some processors work longer onfion signal. o .
difficult branches and other processors finish their job EXecution times in Figure 4 are compared with exe-
quickly. Even though searching is distributed to differentcution times for the dynamic load balancing algorithm in
processors, the workload will reduce to only a few num-Figure 8. Some experiments with dynamic load balancing
ber of busy processors quickly. If we can use idling pro-finished so quickly that DLB bars are not visible for some
cessors to assist difficult branches it will help to increasedraphs. In order to have a clearer comparison, Figure 9
overall efficiency. A load balancing algorithm will help to uses a log scale for execution times. , _
distribute the load across all processors evenly. Although the parallel vertex cover algorithm with dy-
namic load balancing outruns both the parallel vertex
) , cover algorithm without load balancing and the sequen-
4 Dynamic Load Balancing tial algorithm, a load imbalance still occurs once the donor

) ) _ finishes to address this issue donor update algorithm is im-
We applied a scheduler-based load balancing algonthrmememed,

to the parallel vertex cover algorithm. Several load bal-
ancing mechanisms for parallel algorithms have been in-
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Graph [ Sequential Parallel | DLB tributed to workers. Upon termination the donor calcu-
f0-0.45 | 2384.67 | 2400.00 [ 108.28 lates the average degree for the last jobs distributed to the
fo-0.40 | 10023.07 | 9870.77 | 430.19 workers. Then these average degrees are sent to the sched-
fo-0.35 | 29792.09 | 28502.76| 1265.137 uler, who selects the next donor. The scheduler selects
fo-0.30 | >lday | >lday | 6448.77 the worker with the highest average degree job as the new
est-0.45| 915.18 894.21 43.74 donor.

est0.40 | 14004.66 | 2630.92 | 121.90 It is important to note that only the first donor keeps
est-0.35] 12289.54 | 12043.73| 525.93 track of the jobs sent to workers, because keeping track
est-0.30] 56335.00 | 56150.65| 2485.52 of jobs is expensive both in terms of memory and cy-
:2]‘:828 ggg%" gg‘i’g‘?" %g%g cles. Moreover, initial donor is the hardest instance and
e : : : all other processors have work that is donated from the ini-
inf-0.35| 2089.13 | 2005.68 | 96.00 tial donor. Therefore we assume that the jobs later donors
inf-0.30 | 7440.08 | 7243.81 | 345.50 have are not as hard as the jobs initial donor had. It is

not effective to spend resources to obtain information from

Table 2: Sequential, parallel and DLB execution times (inrelatively easy jobs.

seconds)

4.1 Donor Update Algorithm

Initial donor sends degree information to the scheduler
upon termination whereas all other donors terminate with-
out sending additional information. The scheduler uses
degree information to select next donors. After the ini-
tial donor exited, degree information for workers who ask

For the previous algorithm, after the initial job distribu- for more jobs will be removed. As a result, degree infor-
tion, one processor will be designated as the donor, whic ation for the busy workers who later will be selected as
P . : .-~ donors will be remained. After all degree information are
is terminated when the work in the assigned branch is fin- ; i ;

; : . sed, workers are issued the termination signal. The donor
ished. All processors with subsequent calls for more jOb% date process is depicted in Figure 10

will be terminated too. At this moment any processor that P P P 9 )

has a difficult branch will work longer while others are be-

ing terminated. In order to achieve balanced process uti5 Experimental Results and Discussion

lization, processors that finished should be used to support

those still working.

_ To solve this problem, we create a donor update algo- Twelve biological data graphs were tested using the de-
rithm, which works as follows. The initial donor keeps cision version of the vertex cover algorithm, and a cluster
track of the degree structures of the jobs that were disef 32 Intel 3.2GHz processors with 4GB of main memory
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producing little improvement in execution time. In or-
der to address this issue, a dynamic load balancing al-
gorithm was introduced. The algorithm is explained in

detail in Section 4. Dynamic load balancing gives 20—
_ _._ _ _ _ _ 25 times speedup for the biological data graphs that have
working 2 Scheduler been selected. However, this speedup is still sub-linear.
donor The main reason for this slowdown is communication be-
[ | \WW tween donor and workers, which is indeed inevitable. The
intent of this dynamic load balancing algorithm is to have
[] B regular load d%/stribution among thegwo?kers and to mini-
T T T T T wregue mize idle time.

Table 2 lists execution time for the sequential, parallel
and dynamic load balancing algorithms. Based on the re-
sults in Table 2, folic-30, estradio-30 and influenza-30 are

] B the hardest instances in their category. Hardest instances
N~ = were selected for further analysis of process utilization by
4 Seheduler the dynamic load balancing algorithm and the donor up-
date algorithm. In this experiment, processor idling time

— T T T o Graph [ Execution Time] Idling Time
Seheduter fo-0.30 731.90 9.15
work/ est-0.30 317.50 5.24
inf-0.30 32.36 0.92

\ finish

1 B [ 5]

Figure 10: Donor update algorithm

is considered as the time the processor is idle. Time for
communication is not counted as idling time.

Table 4: Execution and idling times for DLB on 120 pro-
cessors

Graph | Sequentiall Parallel| DLB Graph [ Execution Time] Idling Time

fo-0.45 306.52 | 293.70| 9.18 fo-0.30 694.16 62.87

fo-0.40 147.13 | 140.30| 35.18 est-0.30 276.00 25.82

fo-0.35 647.76 | 646.61 | 42.84 inf-0.30 34.71 3.88

fo-0.30 | 6837.19 | 6831.89| 339.28

est-0.45| 23.46 23.43 2.5 Table 5: Execution and idling times for DU on 120 pro-
est-0.40| 3728.79 | 3637.11| 33.00 cessors

est-0.35| 836.74 | 837.04 | 55.13

est-0.30| 3831.91 | 3812.89| 216.68 After completing all tests using the aforementioned
inf-0.45 1.0 - - cluster, load balancing codes were moved to the highly
inf-0.40 0.6 - - capable Kraken supercomputer at ORNL. Load balancing
inf-0.35| 789.62 | 757.09 | 45.13 algorithms were tested for scalability ranging from 12 pro-
inf-0.30 3.0 3.3 0.59 cessors to 2400 processors. Each node on Kraken has two

2.6 GHz six-core AMD Opteron processors and contains
16 GB of main memory. Table 4 has information on exe-
cution time and idling time with the dynamic load balanc-
ing (DLB) algorithm. Also, Table 5 has execution time
was used for testing. Results in Table 3 are for the hardand idling time for the donor update (DU) algorithm. The
est “yes” instance while data in Table 2 are for the hardesPU algorithm has larger idling time compared to the DLB
“no” instance. When the parallel program is working on algorithm. Although DU algorithm has higher idling time
a “yes” instance, the search will be terminated as soort performs well compared to the DLB algorithm. Fig-
as one processor finds a solution, whereas in a “no” inure 11 has idling time as a percentage of execution time
stance, the whole search space has to be searched. For &t folic-30 graph with 120 processors for both DLB and
ample, in Table 2 for influenza-30, the graph vertex covePU algorithms. DLB algorithm has less thafi of idle
program spent 7440 seconds on the hardest “no” instancéme whereas DU algorithm has up 10% of idle time.
On the other hand, in Table 3, the program spent only 3.d here is extra communication in DU compared to DLB as
seconds to find a “yes” instance. Thereby, the executiof result processors have to wait longer. However in DU
time of a “yes” instance cannot be used for meaningfulcollectively processors perform better than DLB because
comparisons. Hence execution times for “no” instanceXxtra communication in DU make sure to occupy idling
were used. A Sequentia| program for a “yes” instanceProcessors with work Wherea_s in DLB after don(:)r termi-
for influenza-0.45 and influenza-0.40 graphs finished verjpates workers who got harder job work harder while others
quickly (less than 1.0 sec). Thus a parallel program wagerminating. _ _
not required. Both the DLB algorithm and the DU algorithm were
Execution times for sequential algorithm, static loadtested for scalability using the hardest graph instances
balancing (or parallel algorithm without explicit load bal- (folic-30, estradio-30 and influenza-30). The execution
ancing algorithm) and dynamic load balancing algorithmtime plot for folic-30 is presented in Figures 12. Although
were compared in Table 2. Although the static load bal-€xecution times for folic-30, estradio-30 and influenza-
ancing algorithm uses 32 processors, it did not gain ex30 were measured, only one plot of execution time is in-
pected performance. As we saw in Figure 5, that happenegluded because all three graphs are similar in shape. Nor-
as a result of uneven distribution of work load. The par-mal measurement does not show any difference in execu-
allel algorithm with static load balancing will boil down tion time, so a log scale was applied. Note that the third

to a small number of busy processors quick|y’ thereforé)lot from Figure 12 shows the diﬁ_erence in execution time
between the DLB and DU algorithms more clearly than

Table 3: Times for hardest “yes” instances
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rithms with folic-30 graph

bends because smaller samples were chosen for the exper-
the first plot. With smaller number of processors, both thement. The sample includes 12, 24, 36, 48, 72, 120, 240,
DLB and the DU algorithm almost follow expected (lin- 480, 600, 720, 840, 960, 1200 and 2400 processors. Plots
ear) execution time, but for higher number of processorsvere produced using data for the aforementioned sam-
DU execution time is closer to the expected value tharple. If experiments are done for a larger sample smoother
the DLB execution time. Note that speedup for each algo€urves can be produced.
rithm was computed by dividing sequential executiontime  The DU algorithm scales better for larger numbers of
by number of processors. Expected speedup is indicatepgrocessors than the DLB algorithm. As seen in Figure 13,
as linear speedup on the plots. In addition an error babLB does not scale up after 120 processors. Because after
representation is available on the speedup plots to show20 processors donor finishes quickly and workers who

the consistency of the results.
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Figure 13: Speedups for folic-30 graph on Kraken
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get a harder job end up working longer, which leads to
a smaller magnitude load imbalance again. On the other
hand, the DU algorithm makes sure to assist harder jobs
using idling processors until all harder jobs are finished.
Therefore DU scales up well even up to 2400 processors.

Even though scalability of the DU algorithm can be
clearly seen in Figure 13, in Figure 14 and in Figure 15
it is not as clear. Primarily this is because the estradio-
30 and influenza-30 graphs are smaller compared to the
folic-30 graph and thus not as hard. Since estradio-30 and
influenza-30 graphs are not much harder there is not much
work for larger number of processors hence communica-
tion overhead dominates the execution time.

After doing these experiments several times, maxi-
mum, average and minimum values for execution time are
obtained. Average values use for plots, in addition mini-
mum and maximum values are shown using an error bar
representation. Error bars for all three graphs are small,
which implies that execution time (and speedup) are con-
sistent for both DLB and DU algorithms.

6 Conclusionsand Direction for Future Research

linear ~——
o0 P Vertex cover remains ai/P-complete problem. As
e such, its computational requirements can be staggering.
pd Yet it has many practical applications that demand exact
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Figure 14: Speedups for estradio-30 graph on Kraken

solutions. Fixed parameter tractability is one approach for
dealing with this conundrum. Kernelization and decompo-
sition are key. Decompoasition in particular can be based
on independent branching actions, which are inherently
parallel.

We initially developed a simple parallel decomposition
algorithm. Different branches were statically assigned to
different processors. Once a job finished, results were re-
ported. Unfortunately, this scheme does not always scale
well. Some branches are much harder than others, in
which case one or only a few processors are left to do most
of the work.

We therefore devised a dynamic load balancing algo-
rithm. With it, the branch with what is perceived as the

Curves in Figures 13, 14 and 15 have noticeablehardest task is selected as a donor, which then distributes
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Figure 12: Execution times for folic-30 graph on Kraken

jobs to idling processors. Requests for more jobs will be Combinatorial Optimization’, Kluwer Academic Pub-

made upon completion of a current job. There is a pos- lishers, pp. 1-74.

sibility of load imbalance, so a donor update algorithm is . . ) )

also implemented. When a current donor finishes, it willChen, J., Kanj, I. A. & Jia, W. (2001), ‘Vertex cover: Fur-

find a next donor and so on. ther observations and further improvemenisyrnal of
Primary testing was done using an in-house cluster Algorithms41, 313-324.

containing 128 processors. More in-depth scalability analepan 3. Kanij, I. & Xia, G. (2006), Improved parame-
ysis was performed on the Kraken supercomputer. With™ o7 ypper bounds for vertex covem R. Krlovic
sufficiently difficult instances, dynamic load balancing ¢"p Urzyczyn, eds, ‘Mathematical Foundations of
shows linear speedup up to 2400 processors. On graphs Computer Science 2b06’, \Vol. 4162 becture Notes

without imposing execution times, we see only sub-linear Computer Science, Springer Berlin Heidelberg
speedup as communication overhead dominates. pp. 238-249. ' '

We have previously observed numerous problems with
static load balancing, curiously more so on real than orDongarra, J. J. & Walker, D. W. (1994), ‘MPI: A message-
synthetic data. Thus this work was intended mainly as passing interface standardiiternaitonal Jornal of Su-
a case study. Nevertheless, we have found the switch to percomputing Applications 8(3/4), 159-416.
dynamic load balancing to be fairly straightforward and ]
quite effective. We think it would be interesting to exper- Downey, R. & Fellows, M. (1999)Parameterized Com
iment with dynamic load balancing algorithms on other plexity, Springer , Berlin.

FPT problems. It may also be interesting to extend scala

bility testing to larger numbers of processors. aG%rr?g | rm'aclt?ébiﬁtj Or,]o\nscg&’deDt'o Sthe( 1???6%&/0%? ult\lelg?
Completeness, W. H. Freeman & Co., New York, NY,
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Abstract

Understanding the dynamics of disease spread is es-
sential in contexts such as estimating load on medi-
cal services, as well as risk assessment and interven-
tion policies against large-scale epidemic outbreaks.
However, most of the information is available after
the outbreak itself, and preemptive assessment is far
from trivial. Here, we report on an agent-based model
developed to investigate such epidemic events in a
stylised urban environment. For most diseases, infec-
tion of a new individual may occur from casual con-
tact in crowds as well as from repeated interactions
with social partners such as work colleagues or family
members. Our model therefore accounts for these two
phenomena. Given the scale of the system, efficient
parallel computing is required. In this presentation,
we focus on aspects related to paralllelisation for large
networks generation and massively multi-agent simu-
lations.

Keywords: Agent-based computing; Complex net-
works; Epidemics; Large-scale simulations; MPI; Par-
allelisation.

Extended abstract

Dynamics of disease spread within a population are
of crucial importance in terms of public health, (e.g.
monitoring of existing outbreaks, evaluation of inter-
vention policies). In order to avoid being limited to
observation and subsequent intervention, computa-
tional models offer tools for preemptive analysis and
decision-making. In this context, models have to deal
with millions of people living in modern urban en-
vironments, each with a refined social behaviour. To
date, most approaches have focused on tackling either
one aspect or the other.
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Network-based models have been used to investi-
gate the impact of social structures on disease spread,
(see e.g. Kretzschmar & Wiessing (1998)). This is
motivated by the fact that, for most infectious dis-
eases, contact is required for a new infection to occur,
(sexually-transmitted infections being obvious exam-
ples). Social structures are represented by a network
where nodes correspond to individuals (or groups),
and edges correspond to social links between these.
Infection spread is then implemented as a stochastic
propagation over the network (Chen et al. 2008).

There are, however, two limitations to this ap-
proach. First, networks with million of nodes are dif-
ficult to obtain from real data, or to generate ab ini-
tio. More crucially, because they are based on social
structures, these models can not account for casual
contacts between strangers, (e.g. in crowded areas
and public transports), which are prevalent in com-
mon infectious diseases such as influenza.

Conversely, agent-based approaches are suited
to model such infections between strangers, which
emerge from individual behaviour: an infection be-
tween travellers on a bus occurs due to individual
choices from each, which lead to them boarding, and
not because of any link between them, (as opposed to
colleagues who have to be in the same office, because
of this work relationship). Such agent-based models
can be efficiently parallelised and used for large-scale
complex systems, as described previously for the im-
mune model (Perrin et al. 2009). The main limitation,
however, is the lack of a formal framework to include
social complex structures.

Given the limitations of both paradigms, it be-
comes apparent that a hybrid model is the most
efficient solution, combining elements of both ap-
proaches. In particular, network-based concepts can
be used to generate socially-realistic populations,
while the agent basis can simulate of an epidemic
outbreak within these. This hybrid approach was
successfully implemented, providing a realistic frame-
work on which to investigate disease outbreaks and
related policies (Claude et al. 2009).

In this presentation, we will detail the network
generation aspects, and the approach taken to par-
allelise massively multi-agent simulations.

In our context, it is necessary for simulations to
handle the social structures corresponding to a large
population. To do so, we combine several types of so-
cial networks: household links between people living
together, (whether they are part of the same fam-
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ily or not), friendship links between people living
in distinet households, (also covering extended fam-
ily links), colleague relationships between co-workers,
and considerations of sexual partnerships. These are
linked through an overall network, which represents
social participation.

The algorithm we will detail in the presentation,
integrates these three layers. The required number
of “social nodes” for the network is first created,
where each network node corresponds to one agent
in the subsequent simulations. These are distributed
by age groups. Household and colleague relation-
ships are generated from publicly available data, (e.g.
Census for type and size distribution of households).
Households are created by gathering selected nodes
together.

Friendship relations are created using a network
generation algorithm adapted from Keeling (2005).
This algorithm is used here to generate a network
of households. When two households are connected,
some members are also cross-connected as “friends”
(e.g. adult household members, children in similar
age groups). These links are categorised as friendship
type, but may also represent more distant familial
relations.

This Keeling generation algorithm has been
showed to be very useful for epidemic modelling, (see
e.g. Badham (2008)). A standard implementation,
using an adjacency matrix to store social links, would
however be limited in terms of the size of networks
it can handle. To address this, we re-implement and
optimise the algorithm, taking into account that, if
in theory any pair of individuals could be linked, in
practice the number of links remain relatively low. A
characteristic of social networks is, indeed, to have a
relatively low average node degree.

The key idea is to store links directly within the
nodes, as a list of neighbours. On a densely con-
nected network, this would not be advisable. How-
ever, a 50,000-individual social network would only
require storing 10 millions values if the average de-
gree was 100, (which would be relatively large for
such networks). Long integers occupy more memory
space than booleans, but this still represents a 30-
fold reduction in memory requirements, compared to
a matrix-based storage that would involve 2.5 billion
booleans, (i.e. over 2 Gb of memory).

This optimisation of memory usage enables han-
dling networks with several tens of thousands nodes
on desktop computers.

For larger networks, however, the algorithm is
limited by the number of operations (and therefore
the network generation time) increasing quadratically
with network size. A single million-node network
would take more than a day to generate, and a net-
work ten times larger over four months, which is
clearly not practical.

We therefore introduce a parallel version, which is
based on the generation and linkage of smaller sub-
networks. This is tested and evaluated on a large-
scale cluster computer. This MPI-based parallelisa-
tion of the algorithm guarantees that large networks
can be generated efficiently on recent clusters, and is
a significant progress for large-scale network genera-
tion. Analysis of the influence of the number of such
subnetworks on computing performances and on the
impact of each algorithm parameter will be detailed
during the presentation. While generating each sub-
network is trivial, linking them in a manner comply-
ing with the specific structure of social networks is
not, and deserves particular attention.
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Once generated, the social network is used as an
input to agent-based simulations. Again, this is a
large-scale effort, with millions of agents, and par-
allelisation is necessary. As mentioned above, the
method we use for this is similar to that developed for
an immune model involving up to a couple of billions
of agents. Here, the key concept is to take advantage
of the city structure, and to handle separate neigh-
bourhoods as mostly-independent units, on distinct
nodes of the cluster. Communication between these
nodes only occurs when an agent is travelling from a
neighbourhood to another, and can therefore be kept
to low levels.

Each node can handle regions of about 4 km?,
so that recent clusters' are able to simulate weeks
of epidemic outbreaks in large urban environments,
with an area equivalent to that of the Dublin Region
(920 km?) or Osaka Prefecture (1890 km?).

There currently is, to the best of our knowledge, no
model of disease progression within very large human
populations which offers the level of detail that we
aim for in terms of both social and casual infections,
nor which permits the inclusion of realistic individual
mobility and social patterns through inclusion of both
network-based and agent-based aspects.

Real-life a priori testing of future outbreaks is of
course impossible, and such a model is therefore ex-
pected to complement and contribute significantly to
existing evaluation processes for intervention policies.

Finally, an hybrid multi-approach framework with
strong translational aspects will necessarily have an
impact on the overall research field, both in refining
the underpinning techniques and for other possible
application areas.

This presentation should, therefore, be of interest
to a large audience, from complex networks special-
ists to biomedical modellers, as well as the parallel
computing community as a whole.
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Abstract

On-line Machine Learning using Stochastic Gradi-
ent Descent is an inherently sequential computation.
This makes it difficult to improve performance by sim-
ply employing parallel architectures. Langford et al.
made a modification to the standard stochastic gradi-
ent descent approach which opens up the possibility of
parallel computation. They also proved that there is
no significant loss in accuracy in their approach. They
did empirically demonstrate the performance gain in
speed for the case of a pipelined architecture with a
few processing units. In this paper we report on ap-
plying the Langford et al. approach on a General Pur-
pose Graphics Processing Unit (GPGPU) with a large
number of processing units. We accelerate the learn-
ing speed by approximately 4.5 times compared to a
standard single threaded approach with comparable
accuracy. We also evaluate the GPU performance for
the sequential variant of the algorithm, which has not
previously been reported. Finally, we investigate how
changes in the number of threads, number of blocks,
and amount of delay, effects the overall performance
and accuracy.

Keywords: GPGPU, Asynchronous Optimisation,
Statistical Machine Learning, On-line Learning

1 Introduction

Parallel architectures, such as the GPU or multi-core
systems, are set to take over traditional serialised ar-
chitectures given they facilitate a path to continued
performance improvement. Given the GPU’s out-
standing floating point performance, it is a low cost
solution for high-performance computing. Further-
more given the widespread deployment of graphics
cards capable of CUDA or OpenCL, writing HPC ap-
plications on a GPU has become a very attractive
option.

This work was supported in part by the Australian Research
Council grant DP0987773.

NICTA is funded by the Australian Government as represented
by the Department of Broadband, Communications and the
Digital Economy and the Australian Research Council through
the ICT Centre of Excellence program.

We would also like to thank Alistair Rendell and Alexander J.

Smola for their guidance and encouragement with this project.
Copyright 2011, Australian Computer Society, Inc. This pa-

per appeared at the 9th Australasian Symposium on Paral-
lel and Distributed Computing (AusPDC 2011), Perth, Aus-
tralia. Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 118. J. Chen and R. Ranjan, Eds.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

GPUs have shown to be outstanding for some sci-
entific modelling applications (Stone et al. 2007, Col-
lange et al. 2007) by achieving surprising acceleration.
Steinkraus et al. (2005) claimed that GPUs are pleas-
ant substitutions to dedicated machine learning hard-
ware, such as analog chips and coarse-grained parallel
computers. Compared with CPUs or even multi-core
CPUs, GPUs still exhibit advantages in many appli-
cations (Raina et al. 2009). Previous work on machine
learning using GPUs mainly obtained acceleration
through intrinsic parallel structures in applications.
For example Raina et al. (2009) experimented with
large-scale deep unsupervised learning on GPUs and
Steinkraus et al. (2005) applied GPUs to a two-layer
fully connected neural network. Generally, GPUs (or
even other parallelised architectures) support appli-
cations which consist of highly symmetric and loosely
coupled calculations. These applications are natu-
rally parallelisable. Unfortunately, many applications
also involve critical sequential blocks, which can not
easily be parallelised. Such difficulty limits the per-
formance of modern parallelised architectures. This
paper tentatively applies the GPU’s computational
capability to one such sequential algorithm: on-line
statistical machine learning using gradient descent.
Although GPUs might not be the most suitable plat-
form available to address sequential issues, other par-
allelised architectures more or less face similar issues
of efficiency when utilising parallel computation ca-
pabilities.

Machine learning is concerned with the design and
development of models and algorithms that allow
computers to improve their performance over time
based on data. Depending on whether or not all train-
ing data are used at each iteration step of the algo-
rithm, one can distinguish between batch and on-line
learning.

Batch machine learning approaches evaluate can-
didate hypotheses against the entire set of training in-
stances. This can be very slow when the training set is
very large. Furthermore, as all the data must fit into
the memory, batch learning utilising large datasets is
not well suited for GPUs which have a small local
memory.

On-line learning takes one instance of data at a
time, and improves its performance solely based on
this data item. This process iterates through all the
data (possibly a number of times) until either some
convergence criteria are achieved or the model pre-
dicts unseen test data sufficiently accurately. As only
the model parameter and one data item at a time
have to be kept in memory, on-line learning better
suits the architecture of GPUs. This is a great ad-
vantage especially when the training set is very large.

The serial nature of on-line approaches means that
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they are difficult to parallelise. This is because the
calculation of hypothesis x;41 requires both the input
of instance z;, training label y; as well as the previ-
ous hypothesis x;. This entire process is depicted in
Figure 1.

Zi+lyi+l

Calculate
Gradient

Calculate
Gradient

gi+]

ypothesis j—=

Xi Xi+2

\

Time

Figure 1: Data flow for the stochastic gradient de-
scent algorithm. In order to calculate the hypothesis
T;t1, one data item z;, training label y;, as well as the
previous hypothesis x; are required. A stage can only
start its calculations if the previous stage has finished
all computations.

Langford’s (Langford et al. 2009) paper “Slow
Learners Are Fast” modifies the standard gradient
descent algorithm permitting the calculation of the
gradient to use a delayed version of the hypothesis.
This opens up the possibility of concurrently execut-
ing the calculation of the gradient. This is depicted
in Figure 2 which shows the dependencies when the
gradient calculation uses a delay of 1.

Ziy1 y|+1

L,

Update
Xi_| i ypothesis x|

Update
Hypothesis Xis2

Calculate
Gradient gin

i ZinYin

Time

Figure 2: Data flow for delayed stochastic gradient
descent algorithm. With a delay of 1, two threads
can run concurrently. Thread A (the lower one) starts
to calculate gradient g; immediately after hypothesis
x;_1 is available. Before it updates the hypothesis x;
with g;, thread B (the upper one) uses the hypothesis
x; to calculate the gradient g;;1. As can be seen from
the data flow, gradient calculation in the threads and
updating hypothesis can be run in parallel.

Clearly a new gradient calculation can be started
after each hypothesis update. That means if the delay
7 is larger than one, potentially 7 threads can be run
in parallel. On the other hand, if the delay is too
large, the gradient updates become outdated because
they are based on too old hypotheses. This limits the
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number of the delay 7 from above.

Langford et al. provide the theoretical foundation
for our series of experiments. They prove convergence
properties of the convex minimisation problem. Yet
they do not experimentally show the performance im-
provement on an actual parallel architecture. Our ex-
periments implement the delayed mechanism on the
TREC dataset (Cormack 2007), and verify the utility
of this approach.

The stochastic gradient approach assumes that the
training instances are independent and identical dis-
tributed (iid) data, this will generally require the
training set to be randomly shuffled before being pro-
vided to the learner. This opens up the possibility of
allowing the reordering of examples when they are
used within the learner, which in turn enables us
to arbitrarily allocate instances to threads without
tightly enforcing an ordering via synchronisation.

The delayed approach trades accuracy with paral-
lelism. Using this parallelism should make the pro-
gram run faster, however, if you need to run more
steps to gain the same accuracy then the speed gained
via parallelism needs to outweigh the accuracy losses.
Otherwise it is better to just run the standard serial
code. We have explored and reported the effect on
accuracy in this paper.

There are a number of challenges in implement-
ing the delayed stochastic gradient descent algorithm
using a GPU. They include:

1. synchronisation is difficult to implement across
all the blocks,

2. synchronisation has the potential to be costly in
terms of performance,

3. the GPUs memory size is relatively small, and

4. it is slow to transfer data between the host and
the device memory.

2 Delayed Stochastic Gradient Descent

This problem is one of binary classification prob-
lems. Email ¢ is denoted 2; € Z and given the label
yr € {£1}, so if y = —1 then the message z is la-
belled as spam, whereas, if y; = 1 then the message
z; is labelled as not spam. Z belongs to an n dimen-
sional space and has a corresponding n dimensional
feature space X C R™. This feature space contains
the hypotheses we intend learning. To determine the
classification of a new message z we simply take the
inner product between the message and that of our
current hypothesis (z,z) if this is negative then the
message is predicted to be spam and if the inner prod-
uct is positive then the message is predicted to be not
spam.

The loss associated with email ¢ using hypothesis
z is I(y: (2, 2)). The smoothed quadratic soft-margin
loss function is used:

- X if x <0
(x-1)? ifxel0,1]
otherwise

lx) =

ol o)

The aim is to find a hypothesis £ that minimises the
sum of the loses over all the training instances. The
basic idea of gradient descent, also known as steepest
descent, is using a single example move the hypoth-
esis  in the direction of the negative gradient. This
is repeated over all the instance of the training set
over a number of repetitions. An annealing schedule
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7 controls the convergence speed. The amount of de-
lay used is denoted 7 € N. Langford et al. (Langford
et al. 2009) proved that if the delay is within a toler-
able range, delayed stochastic gradient descent would
converge to an acceptable value. The convex function
used for calculating the gradient is:

fe(xe) = Uye(2e, Te))

The algorithm for stochastic gradient descent with
the delayed mechanism is given in the following steps:

1. Initialise weight vectors 1, ...,z =0

2. Compute the gradient:

g = Vfi(ze)
— ,, Oy (ze.2e))
=2t 0 (z¢,x¢)
—Yt2t, if (zp,24) <0
= yi((ze, @) — D)z, if (2¢,24) € [0,1]
0, otherwise.

3. Update 441 = &t — N19t—r-
4. Repeat Steps 2 and 3.

Step 3 in the above algorithm is based on the as-
sumption that the weight vector has not been changed
greatly after 7 delays, so we can update the weight
vector by using the delayed gradient. As the number
of instances processed increases the annealing sched-
ule, which is n; = ﬁ, becomes small. This provides
a guarantee that the weight vector will only change
slowly.

Regarding to simplicity of implementation and
consistency with Langford’s experimental settings, we
used dot product in Euclidean spaces to calculate in-
ner product mentioned.

3 Implementation Issues

This section generally covers concerns or possible is-
sues if researchers try to replicate our experiments.
Regarding to GPU hardware restrictions, we have
to make changes to the codes running on the GPU.
Where possible we kept similar experimental settings
to that of Langford et al. (2009), if any other issues
haven’t been mentioned in the paper.

3.1 Machine Learning Issues

Our training set, the TREC dataset (Cormack 2007),
consists of 75419 labeled e-mail messages. This
dataset has three subsets, “full”, “partial” and “de-
lay”. The “delay” part was used because it was large
enough to properly evaluate the implementation, yet,
small enough to still be able to run tests in a rea-
sonable amount of time. In order to transform raw
messages into manipulable data, we conducted a sep-
arate program from training codes to extract rele-
vant information, called pre-processing. Note that
this part of program had not been evaluated, only
the performance of training codes was concerned. In-
formation was extracted from the email header fields
‘From:’,*To:’,*Subject:’, and ‘Time:’, and also from
the body of the email. Symbols other than alphabetic
letters and numbers, such as ASCII code less than 48,
were removed from the text. Then rest text was con-
sisted of words that were separated by space. All the
word were capitalised and recorded into a word dic-
tionary. Langford’s experiment used both the bag of

words and the bag of words pairs representation. For
simplicity reason we only adopted the bag of words
representation. The sparse format of the message rep-
resentation was transformed to a condensed format
which listed just the features appearing within the
email.

However techniques in text classification like ex-
cluding most frequently occurring words, such as “a”,
“the” or words that only appear once from the word
dictionary, had not been applied. Therefore less pre-
knowledge or less artificial intervention was involved
into the experiment. Without specific settings for text
classification, our results might be meaningful for gen-
eral machine learning problems. Furthermore our ex-
periment results shown that weights of these features
had very limited influence on classification results.
Alternatives of these settings may affect accuracy.
However, as our focus is on comparing the GPU im-
plementation with that of a standard CPU approach,
comparing both speed and accuracy. The relative per-
formance, rather than absolute performance, of the
two approaches is more informative.

To fulfil the assumption that input data are iid
data, when messages were loaded, we randomised the
data by repeatedly swapping randomly selected mes-
sages. This provided us with some confidence that
the data provided to the learner was not correlated.
For evaluation, we used the standard ten-fold cross
validation to calculate average learning results.

3.2 Data Structure on the GPU

In order to fit the experimental data into the GPU
memory, we re-arranged some data structures. The
message matrix that records feature indices was trans-
formed into a long vector, called “datalist”. The start
positions of each message was recorded in another
vector called “positionlist”, with which we can easily
extract the message from the long vector “datalist”.
Target values of messages were put into a third vec-
tor called “targetlist”. The GPU has fast but small
constant memory. We stored “positionlist” and “tar-
getlist” into the constant memory. Because the infor-
mation of “positionlist” and “targetlist” is frequently
required, by storing it in the constant memory will
significantly increase efficiency. The vector of feature
weights was stored in global memory. Although this
memory is very slow, global memory was the only
space where all threads can read and update data in
our current understanding. Furthermore for the same
reason two vectors of “gradient” and “messageid” in
global memory were used to store implicit gradient
information. The size of “gradient” depended on the
delay parameter.

Since the GPU used a different memory system
with that of the host CPU system, thus we needed
to copy data from the host memory to the device
memory and copy results from the device memory
back to the host memory after computing. We had
to minimise this cost by avoiding frequently transfer-
ring data between the host and the device.

3.3 Coding

In order to get benchmark results for evaluating the
GPU’s performance, we wrote equivalent programs
for both the CPU and the GPU. Both codes are writ-
ten in C, and the CUDA API was used for calling
the kernel executed on the GPU. We used an asyn-
chronous approach to parallelise most parts of the
program.

In our program, we can change the parameters of
iteration number, delay amount, grid size and block
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size (the total number of threads running is the prod-
uct of the grid size and the block size) to measure the
training time and the error rate. Repetitive learn-
ing was run over many iterations on the same dataset
as indicated. Because every thread does the similar
tasks, we could explain one thread as representative.

The thread loaded features of one message and the
corresponding weights from the global memory. After
calculating the gradient, this thread wrote the gradi-
ent and the message ID into “gradient” and “mes-
sageid” vectors. The index of the vectors was de-
cided by the thread’s unique id. Then the thread up-
dated the delayed gradient stored in “gradient” and
“messageid” vectors (delay 7 times ago) to the global
weight vector and cleared the outdated data.

Assuming every thread handles one parallel com-
putation, then the thread size as Langford suggested
is delay 7 plus 1. For example if the delay is zero, then
at least one thread should be running and thus the
delay mechanism is disabled. Note that total thread
size did not necessarily equal to delay 7 plus 1. To-
tal thread size is a number within the range of one
and instances size. Delay size is between zero and the
total thread size.

3.4 Scheduling

The delayed update mechanism required a well or-
ganised read and write schedule. However it was dif-
ficult for the GPU to keep such an organised sched-
ule, because direct communications between threads
is not easily available (although global memory could
be used, it would be very slow). One thread that
starts processing messages earlier cannot promise to
finish earlier. The thread does not care about other
threads’ status (especially threads in different blocks).
In most cases, such a schedule was chaos and uncon-
trollable, especially when the disabled delay mecha-
nism was used. Variances in the delay built up when
the program had been run for some time. The delay
mechanism would help to keep the schedule organ-
ised, because the more delay we assign, less threads
would try to access the same shared data. Also each
thread cleared its own “gradient” and “messageid”
spaces after updates. For every thread, it required the
results from ¢ — 7 thread but it will not wait on previ-
ous threads. By clearing “gradient” and “messageid”
spaces after every update, we can at least make sure
that if a thread updated results earlier than previous
threads finishing computing, it would at least make
no changes to the final result.

4 Results and Evaluation

This section illustrates our experimental results re-
garding to the CPU and the GPU respectively. We
evaluate the performance of the algorithm running on
the CPU as benchmarks and investigate how changes
in the number of threads, number of blocks, and
amount of delay, effects the overall performance and
accuracy. We also discuss the limitations of our im-
plementation on the GPU.

The graphics card used is the NVIDIA Geforce
GTX 295 and it consists of two identical GeForce
GTX 200 GPUs. Each of these GPUs has 30 Stream-
ing Multiprocessors and each of the Streaming Mul-
tiprocessors has 8 cores. We introduce SM as an ab-
breviation for Streaming Multiprocessors. Each of the
GPUs has 895M global memory and 64K bytes con-
stant memory. Execution blocks have 16K of shared
memory and 16K of registers. The GPU runs at 1.24
GHz and has a CUDA capability of v1.3. The host
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machine uses a AMD Phenom™ II X4 945 processor
with 4GB of main memory. For simplicity we describe
the NVIDIA GPU card as the ’'GPU’ and the AMD
host as the "CPU’.

4.1 Experiments on the CPU

Figure 3 shows the results of Langford’s experiment
based on ”full” dataset. Our results based on both
“full” and “delay” dataset were shown in Figures 4
and 5. In order to show curves clearly, we used dif-
ferent scales of x-axis from Langford’s figure.

Performance on TREC Data

T T T T T

T T
no delay
delay of 10 -------
2+ delayof 100 - |
"‘ delay of 1000 -

Log_2 Error

_12 | | 1 | 1 | ] | 1

0 10 20 30 40 50 60 70 80 90 100
Thousands of Iterations

Figure 3: Results of Langford’s experiment on the full
dataset. The curves of relatively small delay (com-
pared with intance size and iteration times) are close
to the curve of zero delay. The error rate increases
when delay size increases.
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Figure 4: Performance of our experiment on the full
dataset. Our results exhibit similar trends as Lang-
ford’s results. For a relatively large delay, the accu-
racy will be significantly affected.

In order to test that the learner was working prop-
erly, we created an artificial dataset. This artificial
dataset includes some known positive and negative
keywords. Through learning, the induced weight vec-
tor showed that these keywords had a much larger
value than that of other less important words. Fur-
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Performance on Delay Dataset
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Figure 5: Performance of our experiment on delay
dataset. This a similar experiment on a smaller
dataset.

thermore, positive and negative keywords had oppo-
site signs. Frequently occurring features ended up
with small weights, which barely contributed to clas-
sification results.

Then we changed some target values of messages
(adding some outliers) or exchanged position of mes-
sages pairs, the results showed that accuracy was af-
fected in the first few iterations, but gradually con-
verged to a similar accuracy level. Therefore we are
confident that our algorithm, was not only able to
distinguish important features from trivial ones, but
also ignored outliers to some extend. Also we found
that if the input data was large, the effect of delay
could be minimised if we ran many repetitions in the
learning.

Nevertheless our results did not exactly follow that
of Langford’s results, since there were a few differ-
ent settings used. Langford used the bag of word
pairs as well as the bag of words to represent fea-
tures, whereas, we only used bag of words for sim-
plicity reason. We believe that if we adopted alterna-
tive settings, the error rate of classification could be
much lower and more steady. Nevertheless all these
results show the same trends: if the number of iter-
ations increases, the error rate presents more steady
and lower; if the delay amount increases, the less ac-
curacy of converged results would achieve. Under our
assumption that this experiment was a relative com-
parison, if we used our results of the same settings on
the CPU as a benchmark, we could still explore the
character of the GPU.

We tested both results that were calculated by
single precision and double precision under our set-
tings. The results showed that there were no obvious
changes over the classification results within one hun-
dred thousand iterations. The weight of each feature
could be affected on the 10~° scale, but overall clas-
sification results remained the same. In this case, if
the data clusters were distinctive, then such accuracy
loss was tolerable. However in other applications, the
precision of parameters may be more significant.

Figure 6 shows relationship between accuracy and
minimum training time required. As we see, to gain
higher accuracy will incur much more computations.
It is beneficiary if GPUs can accelerate this procedure
while they still be able to keep comparable accuracy.

We ran codes both on the CPU and the GPU using

Figure 6: Example of minimum CPU sequential ex-
ecution training time required to achieve different
accuracy levels based on delay dataset. To achieve
higher accuracy will require much more computa-
tions.

one thread on the “delay” subset without setting de-
lay. The results showed that the CPU’s efficiency was
roughly 35 times higher than that of the GPU (with-
out considering a constant memory transfer time).
Regardless of other facets, in order to gain acceler-
ation from current settings, we ought to parallelise
more than 35 threads (actually much more) on the
GPU. If the CPU running time is less than the mem-
ory transfer time, then there is no point in using the
GPU for acceleration. Only if the CPU’s running is
much greater than the memory transfer time, could
we possibly gain acceleration. Longer CPU running
time is related to more repetitive learning or a larger
dataset.

4.2 Experiments on the GPU

We outlined the performance of the GPU through
changing parameters of delay, iteration, grid size and
block size. Based on the knowledge of these param-
eters, we drew cures of acceleration that we could
achieve in our understanding. More elaborate opti-
misation is still achievable.

4.2.1 Delay

According to Figure 4 and Figure 5, with iteration
of eight hundred times, all curves of delay have con-
verged to steady states. Therefore most of our exper-
iments are tested under 800 iterations. Here we test
results according to changing delay given total run-
ning threads as shown in Figure 7 and Figure 8. We
set the grid size to 30 (equals to number of Stream-
ing Multiprocessors, thus each SM execute one block)
and the block size to 320 (10-fold of warp size). Note
that memory transfer time is not considered. Figure 7
shows that accuracy increases when the delay goes up
to 32. After that accuracy drops gradually when de-
lay keeps increasing. Because when delay is smaller
than 32, one warp of execution will definitely have
two or more threads trying to access the same de-
lay space. We cannot assure that former threads will
finish computing and write back before later threads
started to read. Yet if the delay is over the warp size,
during one warp execution, in most cases, one thread
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accessed one delay space and all threads will finish
computing before next warp execution. However in
terms of Langford’s delay hypothesis, the proper de-
lay should be much higher than 32 in this case. Using
delay of 32 actually updated results earlier than ex-
pected. Figure 8 shows how execution time is affected
by changing the delay. If the delay is smaller, then
less processing time would be consumed. A big delay
space will result in more cache misses, whereas small
delay seemed to be more efficient. This indicates that
with a delay of 32 we will help to achieve the fastest
processing speed without affecting accuracy, yet this
does not strictly follows Langford delay hypothesis.

Accuracy versus Delay

Log, Error

11—
0 2 4 6 8 10 12 14

Log, Delay

Figure 7: Example of accuracy versus delay curve
tested given thread size and iterations. Accuracy in-
creases when the delay goes up to 32. After that ac-
curacy drops gradually when delay keeps increasing.

Time versus Delay
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Figure 8: Example of time versus delay curve tested
given thread size and iterations. Training time in-
creases if the delay increases.

4.2.2 TIteration

We tested the relationship between changing repeti-
tive learning iterations and performance as shown in
Figures 9 and 10. In these experiments: the grid size
is 30; the block size is 320; and the delay is 32. Note
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that memory transfer time is not considered. In Fig-
ure 10 we find that the processing time scales very
well based on the number of iterations, which means
computation and memory costs have a steady pro-
portion. According to the results in Figure 9, it fol-
lowed our simulation expectation that the error rate
drops when the number of iteration increases. Even
if we change the delay, it still shows a similar pat-
tern. Surprisingly our classification results seems to
be even better than the simulation code. A possi-
bly reason might be that using the delay mechanism
could initiate a better starting point for the gradient
descent problem or it could avoid a local minimum
trap. We would like to further experiment with this
to understand what is happening.

Accuracy versus lterations

Log, Error

Log, lterations

Figure 9: Example of accuracy versus iteration curve
tested given threads and delay. The figure shows that
error rate drops when iterations increase.

Time versus lterations

Log, Time

Log, lterations

Figure 10: Example of time versus iteration curve
tested given threads and delay. Training time is pro-
portional to number of iterations.

4.2.3 Grid size versus Block size

We tested codes with zero delay to find out how
changes in grid size and block size will affect pro-
cessing speed. In ideal case, if we double the number
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of threads, the training time will be half the original.
There are three ways to increase the total number
of threads running on a GPU: increase block number
per grid, increase thread number per block, and com-
bined. The results through changing grid size and
block size under 64 iterations is shown as Figure 11.
If we only scale the grid size, we could see a repeti-
tive pattern of 210 thread size (7-fold of SM number).
SM can fit several blocks if the resources are available
(Hong and Kim 2009). So in this case seven blocks
could be executed at one time, therefore we have this
repetitive cure. Therefore it was ideal to have the
block size equal to SM’s fold to achieve better accel-
eration. Note that we cannot fit as many as seven
blocks into one SM as thread number increases. If
we only increase the block size (biggest number of
threads was 512 for our GPU), processing time drops
steadily, although, it is not as steep as the ideal curve.
Therefore we conclude that to efficiently use the GPU
resources, it is advisable to have more threads run-
ning in the blocks. While at the same time we keep
all SMs working. So the grid size of 30 seems to be
the optimum setting.

Time versus Threads

0 100 200 300 400 500
Threads

Figure 11: Example of time versus threads curve. The
grid curve follows the ideal curve in the begining. The
block curve drops steadily.

4.2.4 Acceleration

Figure 12 illustrates the acceleration achieved by
comparing processing time between CPU and GPU
through both running 800 iterations. There are three
curves shown in the figure: “extreme”, “standard”
and “tuned”. In order to increase total thread num-
ber, we first increased the grid size until it reached
30 (the number of SMs) and then increased the block
size. “Extreme” speed-up was the ratio of CPU pro-
cessing time to memory transfer time by assuming
GPU processing time was zero. “Standard” curve was
plotted that thread number equalled to delay plus one
and “tuned” curve was tested under a fixed delay of
thirty-two. Note that all curves take memory transfer
time into account.

4.3 Discussion

One big problem we found in the parallelism of asyn-
chronous optimisation is that a direct and fast com-
munication between threads is not available. Similar
findings revealed by Xiao and Feng (2009) claimed

Acceleration
1200 ; ‘ ‘
= standard —A&—
S 1000 tuned
o extreme
£ 800 |
C
3
oy 600 1
Q
Q
® ra
2 200 s ]
wn A,..A/A/A/A
0 A A A A L L L L
0 2 4 6 8 10 12 14
Log, Threads

Figure 12: Acceleration curve that we could possibly
achieve.

that inter-block GPU communication is a main con-
tributor to total processing time. Furthermore, our
control over thread scheduling is limited. There are a
few possible approaches we could try to address these
synchronisation issues:

1. Stop parallelism after some time, synchronise re-
sults and restart the parallelism. This approach
would help to ensure correctness stage by stage.
However this would introduce more overhead and
also the efficiency of parallelism would be under-
mined.

2. Apply parallelism of pipelined optimisation to
decompose loss function as Langford suggested
(Langford et al. 2009). Assuming f;(x) =
g((&(z:),x)) The issue is to find out appropriate
@(2;) and feed data z; to partial functions. The
advantage of this approach is that it dramati-
cally reduces synchronisation costs and updates
partial values locally. Nevertheless when com-
bining partial values we still need to make sure
all threads are working on the same data.

Theoretical bandwidth of the NVIDIA GeForce
GTX 295 is

1.24 x 10° x (512/8) x 2 = 158.7 GB/sec

We used cudaprof as profiler to test performance by
setting the grid size to 30, the block size to 320 with
delay 32. Overall global memory throughput was
29.9972 GB/sec. Occupancy for major function was
0.625. Only about 20% the GPU’s theoretical ca-
pability had been achieved. This results were fore-
seeable if we implemented a sequential logical pro-
gram onto parallel architectures. Bridges et al. (2007)
experimented sequential codes of C benchmarks in
SPEC CINT2000 on multi-core achieving speedup of
454% using 32 threads. Also some applications can
hardly gain speedup. The bottleneck of the program
was excessive access to global memory during syn-
chronisation. The latency drag down the utilisation
of computations. Xiao and Feng (2009) claimed that
inter-block synchronisation is the main contributor
to total processing time when computation is highly
parallelised.
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5 Conclusions and Future Work

Nowadays increasing parallel cores have become the
stimulus for fast continuing growth in transistor
count. However sequential applications have not
taken the advantages of increasing computability.
Therefore it is worthwhile to explore how to make
use of tomorrow’s processors. In this paper, we im-
plemented Delayed Stochastic Gradient Descent Al-
gorithm on a GPU platform. With the delay mech-
anism, we could parallelise an essentially sequential
problem that has hardly been handled by general par-
allel architectures. Based on our experiment, we show
that this alternative delay algorithm could achieve
comparable accuracy to that of a sequential algorithm
through parallel computations.

We also estimated GPU’s performance on a strong
dependency case, which had not previously been re-
vealed. Our results showed that the GPU’s high
computability was not fully exerted compared to
other GPU implementations. Because the applica-
tion excessively attempted to access global memory,
when parallelism became high, computation time con-
tributed much less than memory access time. How-
ever global memory is the only all threads accessi-
ble memory, thus it was difficult to avoid such costs.
Note that acceleration could still be increased if the
dataset size or iterations increased, but synchronisa-
tion would still be the bottleneck. GPUs have very
light weight threads which are not specially designed
for complex operations. Because of its low scheduling
design, GPUs gain benefits of fast growing computa-
tions but lose complex logic control over parallelism.

In order to solve the sequential problem proposed,
there are two possible solutions: to find or to design
an architecture that supports fast and complex logic
over parallelism, or to revise current algorithms that
minimise synchronisation cost however achieving ap-
plicable accuracy.

Experimenting on GPUs’ simple cores will reveal
its incapability of current design when solving some
general problems. However further study of combin-
ing algorithms with architecture would possibly in-
dicate what are the most important features to be
necessarily included in future designs. For example,
if synchronisation plays an important role in future
parallelism program model, it assures that Fermi ar-
chitecture (new generation of NVIDIA GPUs) with
fast global cache is a smart choice. Furthermore
it could be a good idea to have a central coordi-
nate processor in parallel architecture such as PS3,
which can sufficiently communicate with other par-
allel cores. This coordinator can gather information
from other threads, but at the same time manage the
scheduling and usage of memory. Besides we are also
interested to experiment on other existing architec-
tures. As Vuduc et al. (2010) suggested, a hybrid
CPU/GPU architecture may perform better overall.
This would also eliminate memory transfer time be-
tween the host system and the GPU’s memory, which
is currently one of limitations with current graphics
card configurations.

To minimise the synchronisation cost, we can ex-
periment with pipelined approaches of parallelism
that require less synchronisation. Furthermore we
could improve machine learning algorithms from fre-
quently synchronisation required to only occasional
synchronisation required. For example our applica-
tion requires synchronisation after processing each in-
stance. If an algorithm only requires synchronisation
after processing one hundred instances, this would
make a big difference.

In general our conclusions are limited in two main
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ways. Firstly, our application was specifically on one
machine learning approach, thus, limiting the gener-
alisation of our claims. Secondly we have only tested
the approach on the NVIDIA GTX295 using CUDA
programming language. It would be interesting to ex-
plore the approach on other GPU models and other
programming APIs.

In the next stage in this research we will experi-
ment with other machine learning algorithms on var-
ious GPU models or other architectures. We would
like to explore optimisation techniques, e.g. pipelined
optimisation, orthogonal feature spaces. We could
experiment on other stochastic algorithm to evaluate
hypothesis of delayed update. Another direction is
to explore other algorithms which are more suited to
existing parallel architectures.
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