
Conferences in Research and Practice in

Information Technology

Volume 107

Parallel and Distributed
Computing 2010

Australian Computer Science Communications, Volume 32, Number 6

Client: Computing Research & Education Project: Identity
Job #: COR09100 Date: November 09

Parallel and Distributed
Computing 2010

Proceedings of the Eighth Australasian Symposium on
Parallel and Distributed Computing (AusPDC 2010),
Brisbane, Australia,
January 2010

Jinjun Chen and Rajiv Ranjan, Eds.

Volume 107 in the Conferences in Research and Practice in Information Technology Series.
Published by the Australian Computer Society Inc.

Published in association with the ACM Digital Library.

acmacm

iii

Parallel and Distributed Computing 2010. Proceedings of the Eighth Australasian Symposium on
Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia, January 2010

Conferences in Research and Practice in Information Technology, Volume 107.

Copyright c©2010, Australian Computer Society. Reproduction for academic, not-for-profit purposes permitted
provided the copyright text at the foot of the first page of each paper is included.

Editors:

Jinjun Chen
Faculty of Information and Communication Technologies
Swinburne University of Technology
1, Alfred Street, Hawthorn,
Melbourne, Victoria 3122
Australia
Email: jchen@swin.edu.au
Rajiv Ranjan
School of Computer Science and Engineering
The University of New South Wales
Sydney, NSW 2052
Australia
Email: rranjans@gmail.com

Series Editors:
Vladimir Estivill-Castro, Griffith University, Queensland
Simeon J. Simoff, University of Western Sydney, NSW

crpit@scm.uws.edu.au

Publisher: Australian Computer Society Inc.
PO Box Q534, QVB Post Office
Sydney 1230
New South Wales
Australia.

Conferences in Research and Practice in Information Technology, Volume 107.
ISSN 1445-1336.
ISBN 978-1-920682-88-0.

Printed, December 2009 by UWS Press, Locked Bag 1797, South Penrith DC, NSW 1797, Australia
Document engineering by Susan Henley, University of Western Sydney
Cover Design by Matthew Brecknell, Queensland University of Technology
CD Production by FATS Digital, 318 Montague Road, West End QLD 4101, http://www.fats.com.au/

The Conferences in Research and Practice in Information Technology series aims to disseminate the results of
peer-reviewed research in all areas of Information Technology. Further details can be found at http://crpit.com/.

iv

Table of Contents

Proceedings of the Eighth Australasian Symposium on Parallel and Dis-
tributed Computing (AusPDC 2010), Brisbane, Australia, January 2010

Preface . vii

Programme Committee . viii

Organising Committee . ix

Welcome from the Organising Committee . x

CORE - Computing Research & Education . xi

ACSW Conferences and the Australian Computer Science
Communications . xii

ACSW and AusPDC 2010 Sponsors . xiv

Contributed Papers

A Technology to Expose a Cluster as a Service in a Cloud . 3
Michael Brock and Andrzej Goscinski

A New Integrated Unicast/Multicast Scheduler for Input-Queued Switches . 13
Kwan-Wu Chin

A Dynamic, Decentralised Search Algorithm for Efficient Data Retrieval in a Distributed Tuple Space 21
Alistair Atkinson

A Distributed Heuristic Solution using Arbitration for the MMMKP . 31
Md. Mostofa Akbar, Eric. G. Manning, Gholamali C. Shoja, Steven Shelford and Tareque Hossain

Object Oriented Parallelisation of Graph Algorithms using Parallel Iterator . 41
Lama Akeila, Oliver Sinnen and Wafaa Humadi

Experience on the parallelization of the OASIS3 coupler . 51
Italo Epicoco, Silvia Mocavero and Giovanni Aloisio

Classification of Malware Using Structured Control Flow . 61
Silvio Cesare and Yang Xiang

Lazy Evaluation of PDE Coefficients in the EScript System . 71
Joel Fenwick and Lutz Gross

Author Index . 77

vi

Preface

These proceedings contain the papers presented at the 8th Australasian Symposium on Parallel and Dis-
tributed Computing (AusPDC 2010), held on 18 January in Brisbane Australia in conjunction with the
Australasian Computer Science Week (ASCW). Over the years, previously known as Australasian Sym-
posium on Grid Computing and e-Research (AusGrid), and starting this year, it is being referred to as
AusPDC, has become the flagship symposium for Grid, Cloud, Cluster, and Distributed Computing re-
search in Australia. In total, 16 submissions were received, mostly from Australia, but also from New
Zealand, United States, Asia and Europe. The full version of each paper was carefully reviewed by at
least three referees, and evaluated according to its originality, correctness, readability and relevance. A
total of 8 papers were accepted. The accepted papers cover topics from cloud resource management, grid
inter-operation, multi-processing systems, trusted brokering, performance models, operating systems, and
networking protocols.

We are very thankful to the Program Committee members, and external reviewers for their outstanding
and timely work, which was invaluable for taking the quality of this year’s program to such a high level. We
also wish to acknowledge the efforts of the authors of all paper submissions, without whom this conference
would not be possible. Due to the very competitive selection process, several strong papers could not be
included in the program. We sincerely hope that prospective authors will continue to view the AusPDC
symposium series as the premiere venue in the field for disseminating their work and results. We would
also like to thank the ACSW organizing committee, those that submitted papers and those that attended
the conference their work and contributions have made the symposium a great success.

Rajiv Ranjan
University of New South Wales

Jinjun Chen
Swinburne University of Technology

AusPDC 2010 Programme Chairs
January 2010

vii

Programme Committee

Chairs

Jinjun Chen, Swinburne University of Technology, Australia
Rajiv Ranjan, University of New South Wales, Australia

Members

Jemal Abawajy, Deakin of University, Australia
David Abramson, Monash University, Australia
Mark Baker, University of Reading, UK
David Bannon, Victoria Partnership for Advanced Computing, Australia
Boualem Bentallah, University of New South Wales, Australia
Rajkumar Buyya, University of Melbourne, Australia
Paul Coddington, University of Adelaide, Australia
Neil Gemmell, University of Otago, New Zealand
Andrzej Goscinski, Deakin University, Australia
Kenneth Hawick, Massey University, New Zealand
John Hine, Victoria University of Wellington, New Zealand
Jane Hunter, University of Queensland, Australia
Martin Johnson, Massey University, New Zealand
Nick Jones, University of Auckland, New Zealand
Laurent Lefevre, University of Lyon, France
Andrew Lewis, Griffith University, Australia
Anna Liu, University of New South Wales, Australia
Piyush Maheshwari, Perot Systems, USA
Teo Yong Meng, National University of Singapore, Singapore
Manish Parashar, Rutgers University, USA
Srikumar Venugopal, University of Melbourne, Australia
Yun Yang, Swinburne University of Technology, Australia

Steering Committee

Prof. David Abramson, Monash University, Australia
Prof. Rajkumar Buyya, University of Melbourne, Australia
Dr. Jinjun Chen (Vice Chair), Swinburne University of Technology, Australia
Dr. Paul Coddington, University of Adelaide, Australia
Prof. Andrzej Goscinski (Chair), Deakin University, Australia
Prof. Kenneth Hawick, Massey University, New Zealand
Prof. John Hine, Victoria University of Wellington, New Zealand
Dr. Rajiv Ranjan, University of NSW, Australia
Dr. Wyne Kelly, Queensland University of Technology, Australia
Prof. Paul Roe, Queensland University of Technology, Australia
Dr. Andrew Wendelborn, University of Adelaide, Australia

viii

Organising Committee

Co-Chairs

Dr. Wayne Kelly
Prof. Mark Looi

Budget and Facilities

Mr. Malcolm Corney

Catering and Booklet

Dr. Diane Corney

Sponsorship and Web

Dr. Tony Sahama

Senior Advisors

Prof. Colin Fidge
Prof. Kerry Raymond

Finance and Travel

Ms. Therese Currell
Ms. Carol Richter

Registration

Mr. Matt Williams

DVD and Signage

Mr. Matthew Brecknell

Satchels and T-shirts

Ms. Donna Teague

ix

Welcome from the Organising Committee

On behalf of the Australasian Computer Science Week 2010 (ACSW2010) Organising Committee, we
welcome you to this year’s event hosted by the Queensland University of Technology (QUT). Striving to
be a ”University for the Real World” our research and teaching has an applied emphasis. QUT is one of
the largest producers of IT graduates in Australia with strong linkages with industry. Our courses and
research span an extremely wide range of information technology, everything from traditional computer
science, software engineering and information systems, to games and interactive entertainment.

We welcome delegates from over 21 countries, including Australia, New Zealand, USA, Finland, Italy,
Japan, China, Brazil, Canada, Germany, Pakistan, Sweden, Austria, Bangladesh, Ireland, Norway, South
Africa, Taiwan and Thailand. We trust you will enjoy both the experience of the ACSW 2010 event and also
get to explore some of our beautiful city of Brisbane. At Brisbane’s heart, beautifully restored sandstone
buildings provide a delightful backdrop to the city’s glass towers. The inner city clusters around the loops
of the Brisbane River, connected to leafy, open-skied suburban communities by riverside bikeways. QUT’s
Garden’s Point campus, the venue for ACSW 2010, is on the fringe of the city’s botanical gardens and
connected by the Goodwill Bridge to the Southbank tourist precinct.

ACSW2009 consists of the following conferences:

– Australasian Computer Science Conference (ACSC) (Chaired by Bernard Mans and Mark Reynolds)
– Australasian Computing Education Conference (ACE) (Chaired by Tony Clear and John Hamer)
– Australasian Database Conference (ADC) (ADC) (Chaired by Heng Tao Shen and Athman Bouguet-

taya)
– Australasian Information Security Conference (AISC) (Chaired by Colin Boyd and Willy Susilo)
– Australasian User Interface Conference (AUIC) (Chaired by Christof Lutteroth and Paul Calder)
– Australasian Symposium on Parallel and Distributed Computing (AusPDC) (Chaired by Jinjun Chen

and Rajiv Ranjan)
– Australasian Workshop on Health Informatics and Knowledge Management (HIKM) (Chaired by An-

thony Maeder and David Hansen)
– Computing: The Australasian Theory Symposium (CATS) (Chaired by Taso Viglas and Alex Potanin)
– Asia-Pacific Conference on Conceptual Modelling (APCCM) (Chaired by Sebastian Link and Aditya

Ghose)
– Australasian Computing Doctoral Consortium (ACDC) (Chaired by David Pearce and Rachel Cardell-

Oliver).

The nature of ACSW requires the co-operation of numerous people. We would like to thank all those
who have worked to ensure the success of ACSW2010 including the Organising Committee, the Conference
Chairs and Programme Committees, our sponsors, the keynote speakers and the delegates. Special thanks to
Justin Zobel from CORE and Alex Potanin (co-chair of ACSW2009) for his extensive advice and assistance.
If ACSW2010 is run even half as well as ACSW2009 in Wellington then we will have done well.

Dr Wayne Kelly and Professor Mark Looi
Queensland University of Technology

ACSW2010 Co-Chairs
January, 2010

CORE - Computing Research & Education

CORE welcomes all delegates to ACSW2010 in Brisbane. CORE, the peak body representing academic
computer science in Australia and New Zealand, is responsible for the annual ACSW series of meetings,
which are a unique opportunity for our community to network and to discuss research and topics of mutual
interest. The original component conferences ACSC, ADC, and CATS, which formed the basis of ACSWin
the mid 1990s now share the week with seven other events, which build on the diversity of the Australasian
computing community.

In 2010, we have again chosen to feature a small number of plenary speakers from across the discipline:
Andy Cockburn, Alon Halevy, and Stephen Kisely. I thank them for their contributions to ACSW2010. I
also thank the keynote speakers invited to some of the individual conferences. The efforts of the conference
chairs and their program committees have led to strong programs in all the conferences again, thanks.
And thanks are particularly due to Wayne Kelly and his colleagues for organising what promises to be a
strong event.

In Australia, 2009 saw, for the first time in some years, an increase in the number of students choosing
to study IT, and a welcome if small number of new academic appointments. Also welcome is the news that
university and research funding is set to rise from 2011-12. However, it continues to be the case that per-
place funding for computer science students has fallen relative to that of other physical and mathematical
sciences, and, while bodies such as the Australian Council of Deans of ICT seek ways to increase student
interest in the area, more is needed to ensure the growth of our discipline.

During 2009, CORE continued to work on journal and conference rankings. A key aim is now to
maintain the rankings, which are widely used overseas as well as in Australia. Management of the rankings
is a challenging process that needs to balance competing special interests as well as addressing the interests
of the community as a whole. ACSW2010 includes a forum on rankings to discuss this process. Also in
2009 CORE proposed a standard for the undergraduate Computer Science curriculum, with the intention
that it be used for accreditation of degrees in computer science.

COREs existence is due to the support of the member departments in Australia and New Zealand, and I
thank them for their ongoing contributions, in commitment and in financial support. Finally, I am grateful
to all those who gave their time to CORE in 2009; in particular, I thank Gill Dobbie, Jenny Edwards, Alan
Fekete, Tom Gedeon, Leon Sterling, and the members of the executive and of the curriculum and ranking
committees.

Justin Zobel

President, CORE
January, 2010

ACSW Conferences and the
Australian Computer Science Communications

The Australasian Computer Science Week of conferences has been running in some form continuously
since 1978. This makes it one of the longest running conferences in computer science. The proceedings of
the week have been published as the Australian Computer Science Communications since 1979 (with the
1978 proceedings often referred to as Volume 0). Thus the sequence number of the Australasian Computer
Science Conference is always one greater than the volume of the Communications. Below is a list of the
conferences, their locations and hosts.

2011. Volume 33. Host and Venue - Curtin University of Technology, Perth, WA.

2010. Volume 32. Host and Venue - Queensland University of Technology, Brisbane, QLD.

2009. Volume 31. Host and Venue - Victoria University, Wellington, New Zealand.
2008. Volume 30. Host and Venue - University of Wollongong, NSW.
2007. Volume 29. Host and Venue - University of Ballarat, VIC. First running of HDKM.
2006. Volume 28. Host and Venue - University of Tasmania, TAS.
2005. Volume 27. Host - University of Newcastle, NSW. APBC held separately from 2005.
2004. Volume 26. Host and Venue - University of Otago, Dunedin, New Zealand. First running of APCCM.
2003. Volume 25. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue

- Adelaide Convention Centre, Adelaide, SA. First running of APBC. Incorporation of ACE. ACSAC held
separately from 2003.

2002. Volume 24. Host and Venue - Monash University, Melbourne, VIC.
2001. Volume 23. Hosts - Bond University and Griffith University (Gold Coast). Venue - Gold Coast, QLD.
2000. Volume 22. Hosts - Australian National University and University of Canberra. Venue - ANU, Canberra,

ACT. First running of AUIC.
1999. Volume 21. Host and Venue - University of Auckland, New Zealand.
1998. Volume 20. Hosts - University of Western Australia, Murdoch University, Edith Cowan University and

Curtin University. Venue - Perth, WA.
1997. Volume 19. Hosts - Macquarie University and University of Technology, Sydney. Venue - Sydney, NSW.

ADC held with DASFAA (rather than ACSW) in 1997.
1996. Volume 18. Host - University of Melbourne and RMIT University. Venue - Melbourne, Australia. CATS

joins ACSW.
1995. Volume 17. Hosts - Flinders University, University of Adelaide and University of South Australia. Venue -

Glenelg, SA.
1994. Volume 16. Host and Venue - University of Canterbury, Christchurch, New Zealand. CATS run for the first

time separately in Sydney.
1993. Volume 15. Hosts - Griffith University and Queensland University of Technology. Venue - Nathan, QLD.
1992. Volume 14. Host and Venue - University of Tasmania, TAS. (ADC held separately at La Trobe University).
1991. Volume 13. Host and Venue - University of New South Wales, NSW.
1990. Volume 12. Host and Venue - Monash University, Melbourne, VIC. Joined by Database and Information

Systems Conference which in 1992 became ADC (which stayed with ACSW) and ACIS (which now operates
independently).

1989. Volume 11. Host and Venue - University of Wollongong, NSW.
1988. Volume 10. Host and Venue - University of Queensland, QLD.
1987. Volume 9. Host and Venue - Deakin University, VIC.
1986. Volume 8. Host and Venue - Australian National University, Canberra, ACT.
1985. Volume 7. Hosts - University of Melbourne and Monash University. Venue - Melbourne, VIC.
1984. Volume 6. Host and Venue - University of Adelaide, SA.
1983. Volume 5. Host and Venue - University of Sydney, NSW.
1982. Volume 4. Host and Venue - University of Western Australia, WA.
1981. Volume 3. Host and Venue - University of Queensland, QLD.
1980. Volume 2. Host and Venue - Australian National University, Canberra, ACT.
1979. Volume 1. Host and Venue - University of Tasmania, TAS.
1978. Volume 0. Host and Venue - University of New South Wales, NSW.

Conference Acronyms

ACDC Australasian Computing Doctoral Consortium
ACE Australasian Computer Education Conference
ACSC Australasian Computer Science Conference
ACSW Australasian Computer Science Week
ADC Australasian Database Conference
AISC Australasian Information Security Conference
AUIC Australasian User Interface Conference
APCCM Asia-Pacific Conference on Conceptual Modelling
AusPDC Australasian Symposium on Parallel and Distributed Computing (replaces AusGrid)
CATS Computing: Australasian Theory Symposium
HIKM Australasian Workshop on Health Informatics and Knowledge Management

Note that various name changes have occurred, which have been indicated in the Conference Acronyms sections

in respective CRPIT volumes.

xiii

ACSW and AusPDC 2010 Sponsors

We wish to thank the following sponsors for their contribution towards this conference.

Client: Computing Research & Education Project: Identity
Job #: COR09100 Date: November 09

CORE - Computing Research and Education,
www.core.edu.au

Queensland University of Technology,
www.qut.edu.au

Australian Computer Society,
www.acs.org.au

CEED,
www.corptech.com.au

CSIRO ICT Centre,
www.csiro.au/org/ict.html

SAP Research,
www.sap.com/about/company/research

Manjrasoft Pty Ltd,
www.manjrasoft.com

xiv

Contributed Papers

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

1

CRPIT Volume 107 - Parallel and Distributed Computing 2010

2

A Technology to Expose a Cluster as a Service in a Cloud
Michael Brock and Andrzej Goscinski

School of Information Technology, Deakin University
Pigdons Road, Waurn Ponds, Victoria 3217

{mrab, ang}@deakin.edu.au

Abstract
Clouds refer to computational resources (in particular,
clusters) that are accessible as scalable, on demand, pay-
as-you-go services provided in the Internet. However,
clouds are in their infancy and lack a high level
abstraction. Specifically, there is no effective discovery
and selection service for clusters and offer little to no ease
of use for clients. Here we show a technology that
exposes clusters as Web services in the form of a Cluster
as a Service for publishing via WSDL, discovering,
selecting and using clusters. .
Keywords: Cluster as a Service, WSDL Publishing and
Selection, Dynamic Brokering, Clouds.

1 Introduction
Cloud computing is made possible through the
combination of virtualization, Service Oriented
Architecture (SOA), and Web and RESTful services.
Virtualization allows any computer platform to be
supported regardless of hardware and software. By
abstracting cluster and server software, it improves the
efficiency, availability, access and use of resources and
applications. Virtualization enables the use of idle cycles
of resources of datacenters, which are in 80% unused.
SOA forms an architectural basis for the cooperation of
clients, services, and registries (Papazoglou and van den
Heuvel 2007). Web and RESTful services provide a high
level abstraction and highly interoperable communication
subsystem. Scalable data centers offer dynamic and huge
hardware provisioning. The end result is an inexpensive,
Internet accessible on demand environment where clients
use computing resources on a pay-as-you-go basis as a
utility and are freed from hardware and software
provisioning issues.

For clients to access resources they must be
discovered. Clouds and their computational resources are
not easy to discover and it is difficult to select and use
services. An analysis of the three main clouds (EC2
(Amazon 2007), Azure (Microsoft 2009), and AppEngine
(Google 2009), has found that they and their
services/resources are difficult to discover and offer little
to no ease of use unless the user is a software developer.

Clusters are a basic component of clouds. However, it
is difficult to discover clusters and select a cluster that
satisfies client requirements. This implies that clients
have to access every cluster from a list provided by a
registry to learn about their state and characteristics. It is

Copyright © 2010, Australian Computer Society, Inc. This
paper appeared at the 8th Australasian Symposium on Parallel
and Distributed Computing (AusPDC 2010), Brisbane,
Australia. Reproduction for academic, not-for-profit purposes
permitted provided this text is included.

also not easy to use cloud clusters as they are not exposed
at a high level of abstraction (Jha et al. 2009).

This paper presents an outcome of our project that
addresses some of these problems. It shows a technology
that exposes a cluster as a service that offers a high level
abstraction of clusters in the form of Cluster as a Service
(CaaS). The proposed technology is based on the
Resources Via Services (RVWS) framework (Brock and
Goscinski 2008a; Brock and Goscinski 2008b). The
technology proposed in this paper allows efficient
exposing and publishing via WSDL documents of Web
services exposing clusters, their discovery and selection
of a requested cluster and makes its use easier. As the
WSDL document is the most commonly requested and
recorded object of a Web service, the inclusion of
cluster’s state and other information in the WSDL
document makes the internal activity of the Web services
exposing this cluster publishable.

It is important to mention that this paper does not
address cloud SLAs (Service Level Agreements),
business and provisioning models, security and reliability
(network and computer system outages), although they
are seen as critical aspects of clouds.

The rest of this paper is structured as follows. Section
2 discusses three well known clouds and concludes that
they and their services/resources are difficult to discover
and do not support service selection and ease of use well.
Section 3 introduced a high level abstraction and
architecture of the CaaS Technology. Section 4 discusses,
following a brief characterization of the RVWS
framework, the logical design of CaaS. All components
responsible for the publication of clusters, their discovery
and selection, and actual use are discussed extensively.
Section 5 presents a proof of concept in the form of
implementation and experiments carried out to
demonstrate the way a cluster is published, found and
used. Section 6 provides a conclusion.

2 Related Work
While the use of Web services has made cloud services
interoperable, Web services are natively stateless, and can
complicate the exposure of resources that depend heavily
on state. The WSRF framework (Czajkowski et al. 2004)
makes Web services stateful but the state itself is not
publishable. The lack of published state forms a major
obstacle: if the state of the Web service is not published,
clients cannot learn if the Web service is ready for
requests or not. Furthermore, while the standards behind
the publication of Web services are extensive, their
practice is limited greatly to static parameters such as the
publication of Web service functionality, communication
patterns, and provider contact details. Finally, the use the
clouds are not easy and require clients to have good
knowledge of them.

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

3

Virtualization lays the foundation for sharable on
demand infrastructure, on which three basic cloud
abstractions are offered on demand:
• Infrastructure as a Service (IaaS) – makes basic

computational resources (e.g., storage, servers)
available,

• Platform as a Service (PaaS) – makes offering that
enable easy development and deployment of scalable
applications, and

• Software as a Service (SaaS) – allows complete end
user applications to be deployed, managed, and
delivered over the Web.

The big four clouds, EC2 (Amazon 2007), Azure
(Microsoft 2009), AppEngine (Google 2009) and
Salesforce.com (Salesforce 2009) that represent these
three basic cloud abstractions, only provide basic support.

Initially, EC2 was basically hardware as a service; it
was for the user of EC2 to create the entire software stack
starting with an operating system. Just recently, the
Amazon announced their cluster services, i.e. Auto-Scale,
Load-balance, and CloudWatch, moving the cloud to the
PaaS category. However, features such as Auto-Scale,
require involvement of the EC2 client. Before one can use
Auto-Scale, one has to create multiple instances of
Amazon images for Auto-Scale to utilize.

AppEngine is a PaaS cloud where clients are able to
construct services and deploy them to AppEngine for
execution without having to rebuild the software stack.
However, AppEngine is very restricted in what language
and technology can be used to build the services. At the
time of writing, AppEngine only supports the Java and
Python programming languages.

Both AppEngine and EC2 offer cluster like data
processing in the form of MapReduce (Dean and
Ghemawat 2004) and Hadoop (Apache 2009)
respectively. In AppEngine, services are created to use
Google’s MapReduce framework while EC2 offers
virtual servers with Hadoop installed. However, both
MapReduce and Hadoop are restrictive because they are
specialized for distributed data processing.

Salesforce is a SaaS cloud: specifically, CRM software
as a service. Instead of maintaining hardware and
software licenses, use of the software hosted on
Salesforce servers for a minimal fee is offered. However,
Salesforce is still primitive. The software cannot be
customized and discovery of required software is only
keyword based.

These approaches appear to have no means of
discovery. At this time Windows Azure is seen as the
only cloud that offers discovery. An underlying
component to Azure is the .NET Services Bus. When a
service is hosted in Azure, it is able to register a URI to
the Bus so that clients can discover the service. As the
Bus does the location resolution, clients are able to use
the service no matter where the service is moved. While
the Bus offers discovery, its solution is still not
satisfactory. The only element that can be registered is a
URI. All other elements such as attributes on activity and
limitations are not published.

In summary, these four clouds provide some form of
service management. However, they require, with the

exception of Azure, new and dedicated programming
environments. Furthermore, clients must be heavily
involved in configuration of virtual servers and execution
of their applications in the same manner as programmers
did years ago when they used a command driven Unix
system (Chaganti 2008; VCL 2008). Clients face difficult
problems of resource discovery and automatic services
selection; dynamic sharing toward efficient management
of resources; QoS and reputation of providers and clients;
and fault tolerance. What is needed is an approach to
simplify the publication of clusters, their discovery and
actual use. Clients should be able to easily place required
files and executables on the cluster, and get the results
back without knowing any cluster specifics. A solution is
in the proposed Cluster as a Service, a high level
abstraction of clusters within clouds.

3 Cluster as a Service
Our Cluster as a Service (CaaS) Technology belongs to
the category of PaaS clouds. The purpose of the CaaS
Technology is to expose a cluster as a dynamically
changing stateful service, manage the discovery and
selection of clusters, the specification of cluster jobs1, the
upload of required files, the monitoring of execution and
the download of result files. The CaaS Technology does
not require any special development environment; it
supports development, deployment and execution of
applications that traditionally could be executed on a
standalone cluster. The CaaS abstraction and technology
is applicable to both public and private clouds.

This section discusses the CaaS technology in detail.
In particular, as this the technology is immersed in the
RVWS framework, the framework is briefly introduced.
That is followed by the presentation of the CaaS high
level abstraction, architecture, behavior, and the use of a
stateful WSDL document.

3.1 RVWS Basics
While Web services have simplified resource access, it is
not possible to know if the resource behind the Web
service is ready for a request. In fact, it is out right
impossible to easily find Web services that satisfy the
client requirements. To do so requires clients to research
extensively the services themselves before they are used.

To address these issues, we proposed our Resources
Via Web Service (RVWS) framework. Diagram 1 shows
an overall vision of RVWS in relation to clients and
clouds. A key element of RVWS is the discovery of
services and resources using state and characteristic
attributes published to Web service WSDL documents.

The automatic service discovery allows for both a
single service (e.g., a cluster) discovery and selection, and
an orchestration of services to satisfy computation
workflow requirements. The SLA (Service Level
Agreement) reached by the client and cloud service
provider specifies attributes of services, in particular
clusters, that form the client’s request or workflow. This

1 It is good to recall the difference between processes and jobs.
Jobs contain programs, data and even configuration and/or
management scripts. A process is a program that is in execution.
When clients use a cluster, they submit jobs and one or more
processes are created to execute the job.

CRPIT Volume 107 - Parallel and Distributed Computing 2010

4

is followed by the process of services’ selection using
brokers. Thus, selection is carried out automatically and
transparently.

Diagram 1: Dynamic Discovery and Selection

There are two categories of dynamic attributes
addressed in the RVWS framework (Brock and Goscinski
2008a), (Brock and Goscinski 2008b): state and
characteristic. State attributes cover the current activity of
the service and its resources thus indicating if a given
service is ready for client requests. Characteristic
attributes cover the operational and physical limitations
of the service, the resources behind it, quality of service
(QoS), price and even information about the providers of
the services.

To keep stateful Web services current to their
resources, a Connector (Brock and Goscinski 2008a) is
used to detect changes in resources and then pass them on
to the Web service. The Connector has three logical
modules to keep the stateful Web service current:
Detection, Decision and Notification. The Detection
module routinely queries for attribute information from
the resource. Any changes in the attributes are passed to
the Decision module that decides if the attribute change is
large enough to warrant a notification thus preventing
excessive communication with the Web service. If
notification is needed, the updated attributes are passed
on to the Notification module. Once the attribute changes
have been assessed, this module informs the stateful Web
service that updates its internal state. When Clients
requests the stateful WSDL document, the Web service
returns the WSDL document with the values of all
attributes at the request time.

Through the extensible nature of the WSDL document,
it is possible to include additional information (state and
characteristics) by encapsulating it in its own section. All
information of service resources is kept in a new WSDL
section called the Resources section. For each resource
behind the Web service, a ResourceInfo element exists.
Each ResourceInfo section has a resource-id attribute and
two child sections, the state section and the characteristic
section. When the Connector learns of the resource for
the first time it publishes the resource to the Web service.

While the stateful WSDL document eliminates the
overhead incurred from manually learning the attributes
of the service and its resource(s), the issues behind

discovering needed services are still unresolved.
To help ease the discovery of services with stateful

WSDL documents, a Broker was proposed (Brock and
Goscinski 2009). The Broker is able to transparently
contact other known Brokers if it cannot satisfy a Client
request.

When publishing to the Broker, the Provider sends
attributes of the Web service. The provider is even able to
publish attributes about itself, e.g., name, price. After
providing attribute information about the Web Service,
the Broker gets the stateful WSDL document from the
Web service. After getting the stateful WSDL document,
the Broker has the complete attribute set that is stored
across three stores: the Service, Resources and Provider
stores. As the Web service changes, it is able to send a
notification to the Broker (and also to the client if
necessary) that then updates the relevant attribute in the
relevant store.

When seeking desired services, the Client submits to
the Broker three groups of attribute values for Service,
Resource, and Provider. The Broker compares each
attribute group on the related data store. Then, after
getting matches, the Broker applies filtering. As the
Client using the Broker could be anything from a human
operator behind a web browser to another software unit,
the resulting matches have to be filtered to suit its needs.
Finally, the filtered results are returned to the Client.

3.2 CaaS – High Level of Abstraction
Clouds represent a high level of abstraction of a large
distributed system achieved through layers of
virtualization and abstraction. One of highest levels of the
abstraction hierarchy is the concept of a service. This
implies that cloud should offer a simple high level
interface that allows clients to discover, select and access
cloud resources (storage, CPU cycles) exposed as
services easily and transparently.

An attempt of forming a hierarchical model of
abstraction to address stateless Web service, stateful Web
services based on the WSRF framework that do not
expose state directly, and stateful Web services based on
the RVWS framework that exposes dynamically changing
state directly was presented in (Brock and Goscinski
2008a, Brock and Goscinski 2008b).

A proposal of creating a higher-level abstraction for
grids to provide an explicit support for usage modes was
introduced in (Jha et.al 2009). However, the authors have
not moved beyond a general description of their vision.

This section shows a layer of abstraction that takes
advantage of the hierarchy presented in (Brock and
Goscinski 2008a, Brock and Goscinski 2008b) that sits
within the cloud abstraction. The relationship among
existing stateless Web service standards and frameworks,
and the level of abstraction provided by the CaaS, an
example of the PaaS cloud, that offers an interface for
clients are shown in Diagram 2.

The CaaS provides the highest level of abstraction that
hides all hardware and software features of cloud clusters.
Clients only receive minimum operational amount of data
(service location, invocation interface, current state and
characteristics information) and are provided Web pages
to deploy, run, and control execution of their jobs.

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

5

Diagram 2: CaaS Abstraction

3.3 CaaS Architecture and Behavior
The exposure of a cluster via a Service is intricate and
comprises several services running with and on top of a
physical cluster. Diagram 3 shows the complete solution
with a cluster, RVWS and the proposed CaaS service.

Diagram 3: Complete CaaS System

A typical cluster is comprised of four elements, nodes,
fast networks, data storage and middleware. As the focus
of this paper is abstraction, only cluster middleware is
addressed here. Cluster middleware, a basic level of
virtualization of clusters, is comprised of multiple
components to manage the cluster and provide a single
system image (Goscinski et al. 2002) thus preventing the
process running on the cluster from needing to know the
cluster organization.

With all the services in the middleware and the
changes in node load, there is a lot of information to
consider when finding a cluster. As time progresses, the
amount of free memory, disk space and CPU usage of
each cluster node changes dramatically. Furthermore,
information about how quickly the scheduler can take a
job and start it on the cluster is vital in choosing a cluster.
Currently used Web services (stateless and even WSRF

stateful) do not take this changing information into
account.

Thus while the Broker makes information about a
cluster known (location and service invoking
information), easing the use of a cluster was still left
open. Clients could find required clusters but they still
had to manually transfer their files, invoke the scheduler
and get the results back. All three tasks require
knowledge of the cluster and are conducted using work
demanding tools.

To make information about the cluster publishable the
RVWS framework was used to create a Cluster
Connector and Publisher Web service. The role of the
Publisher Web service was to show current cluster
dynamic attribute information via a stateful WSDL
document. To make the Publisher Web service (and the
cluster behind it) discoverable, our Broker was used.

The role of the CaaS Service is to (i) find (using the
Broker) matching clusters based on client requirements,
(ii) provide easy and intuitive file transfer tools so clients
can upload jobs and download results, and (iii) offer an
easy to use interface for clients to use the cluster.

It may be required that data for cluster jobs be stored
in a designated location (a directory) within the storage.
As clients to the cluster cannot know any of this
information, it is for the CaaS service to abstract the
transfer of data files to the point where clients appear to
operate the cluster storage as one of their own storage
systems. Finally, the CaaS Service communicates with
the cluster’s scheduler, thus freeing the client from
needing to know how the scheduler is invoked when
submitting and monitoring jobs.

Figure 1: Publisher Web Service WSDL

3.4 Publisher Web Service Stateful WSDL
Through the extensible nature of the WSDL schema
(Christensen 2001, Papazoglou 2008), it is possible to
include additional information (specifically, state and
characteristics) into existing WSDL documents. This is
possible by encapsulating the additional information in its
own WSDL section.

RVWS
State Exposure through WSDL

Simplified Notification
Brokering

WSRF
State Management

Addressing
Notifications

Stateless Web Services
WSDL, SOAP, XML

State and Characteristics Information
Cluster

Connector

Current WSDL Broker Stateful Web
Service

CaaS

Client Interface
Discovery, Selection, Access Services

Client

Cloud

<definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <resources>
 <resource-info resource-identifier="resourceId">
 <state element-identifier="elementId">
 <cluster-state element-identifier="cluster-state-root">

 <cluster-node-name free-disk="" free-memory="" native-os-name=""
native-os-version="" processes-count=""
processes-running="" cpu-usage-percent=""
element-identifier="stateElementId" memory-free-percent="" />

 …Other Cluster Node State Elements…
 </cluster-state>
 </state>

 <characteristics element-identifier="characteristicElementId">
 <cluster-characteristics node-count=""

element-identifier="cluster-characteristics-root">

 <cluster-node-name core-count="" core-speed="" core-speed-unit=""
hardware-architecture="" total-disk="" total-memory=""
total-disk-unit="" total-memory-unit=""
element-identifier="characteristicElementId" />

 <supported-software>
 <software version="" type="" version="" />

 …Other Supported Software Elements…
 </supported-software>

 …Other Cluster Node Characteristic Elements…
 </cluster-characteristics>
 </characteristics>
 </resource-info>
 </resources>

 <types>...
 <message name="MethodSoapIn">...
 <message name="MethodSoapOut">...
 <portType name="CounterServiceSoap">...
 <binding name="CounterServiceSoap" …>...
 <wsdl:service name="CounterService">...
</wsdl:definitions>

CRPIT Volume 107 - Parallel and Distributed Computing 2010

6

All information of service resources is kept in a new
WSDL section called Resources. The core significance of
RVWS is its combination of the WSDL of Web services
with dynamic attributes. Figure 1 shows the resources
section added to the WSDL of the cluster Web service.

Both the state and characteristics elements contain
several description elements; each with a name attribute
and (if the provider wishes) one or more attributes of the
service. Attributes in RVWS use the {name: op value}
notations. An example attribute is {cost: <= $5}. As well
as showing the attributes in the stateful WSDL document,
the attribute information has to be organized so Clients
viewing the stateful WSDL document immediately
understand what each attribute means.

For the CaaS service to properly support the role of
cluster discovery, extensive information about clusters
and their individual nodes needs to be published to the
WSDL document of the Cluster Web Service and
subsequently to the Broker. Table 1 shows attributes of
each node in a cluster.

4 CaaS Service Design
This section discusses the CaaS Service design. In
particular, it shows the CaaS components, user interfaces,
and their behavior. The CaaS service carries out three
main tasks: Cluster Discovery and Selection, Job
Management and File Management. Given the size and
number of tasks, the CaaS service was modularized.
Diagram 4 shows the structure of the service.

Diagram 4: CaaS Service Design

The modules inside the Web service are only accessed
through an interface. The use of the interface means the
Web service can be updated over time without requiring
clients to be updated nor modified.

Invoking an operation on the CaaS Service Interface
(discovery, selection, etc) invokes other operations on
other modules. Thus, to describe the role each module
plays in the CaaS service, the following sub-sections
outline the various tasks the CaaS service carries out.

4.1 Cluster Discovery and Selection
The dynamic attribute information only relates to clients
that are aware of them. Human clients know what the
attributes are, owning to the section being clearly named.
Software clients designed pre-RVWS ignore the
additional information as they follow the WSDL schema
that we have not changed.

When discovering services, the client must submit to
the Broker three groups of attribute values (1 in Diagram
5); Service, Resource, and Provider. Thus to start
discovery, clients provide cluster requirements in the
form of attribute values, such as the number of nodes, to
the CaaS Service Interface (1). Next, the CaaS Service
Interface invokes the Cluster Finder module (2) that
communicates with the Broker (3). The Broker returns (if
any) an array of service matches which offer clusters that
match the supplied requirements.

Diagram 5: Discovering suitable Clusters

To address the granularity of the Broker results, the
Cluster Finder module invokes the Results Organizer
module (4) that takes the Broker results and returns a
summarized version. After getting the organized results,
the results are returned to the client via the CaaS Service
Interface (5-6). The organized results instruct the client
what clusters exist and how each cluster matches up to
the requirements. After reviewing the results, the client is

Result OrganiserCluster Finder

CaaS Service Interface

Dynamic Broker

Client

1. 6.

2. 5.

3.

4.

Table 1 Cluster Attributes

Type Attribute Name Attribute Description Source

C
ha

ra
ct

er
is

tic
s

core-speed Speed of each core

Cluster
Node

core-speed-unit Unit for the core speed (e.g.: GigaHertz)
total-disk Total amount of physical storage space
total-disk-unit Storage amount unit (e.g.: Gigabytes)
total-memory Total amount of physical memory
total-memory-unit Memory amount measurement (e.g.: Gigabytes)
supported-software-name Name of a single piece of software installed on the cluster
supported-software-type Type of software installed on the cluster (eg: operating system)
supported-software-version Version of a single piece of software installed on the cluster (eg: 6.1.0)
node-count Total number of nodes in the cluster Generated

S
ta

te

free-disk Amount of free disk space
Cluster
Node

free-memory Amount of free memory
os-name Name of the running operating system
os-version Version of the running operating system
cpu-usage-percent Overall percent of CPU used. As this metric is for the node itself, this value

becomes averaged over cluster core Generated
memory-free-percent Amount of free memory on the cluster node

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

7

informed enough to choose a cluster.
The automatic selection of services is performed to

optimize a function reflecting client requirements. Time
critical and high throughput tasks benefit by executing a
computing intensive application on multiple clusters
exposed as services of one or many clouds.

4.2 Job Submission
After selecting a required cluster, all executables and data
files have to be transferred to the cluster and the job
submitted to the scheduler for execution, as shown in the
Diagram 6 workflow.

Diagram 6: Job Submission

All required job execution parameters, data files,
executables, scripts, software libraries (if any) and are
uploaded to the CaaS Service (1). Once the file upload is
complete, the Job Manager is invoked (2). As the CaaS
Service still has the required job files, the first task the
Job Manager resolves is the transfer of all files to the
cluster by invoking the File Manager (3). The File
Manager makes a connection to the cluster data storage
and commences the transfer of all files (4). Upon
completion of the transfer (4), the outcome is reported
back to the Job Manager (5). On failure, a report is sent
and the client can decide on the appropriate response.

If the file transfer was successful, the Job Manager
invokes the scheduler on the cluster (6) with the
execution parameters given in (1). If the outcome of the
scheduler (6) is successful, the client is then informed via
the CaaS Service Interface (7-8). The information
conveyed includes the response from the scheduler, the
job identifier the scheduler gave to the job and any other
information the scheduler provides.

4.3 Job Monitoring
Diagram 7 outlines the workflow the client takes when
querying about his or her job after submitting it.

Diagram 7: Job Monitoring

The client first contacts the CaaS Service Interface (1)
that then invokes the Job Manager module (2). No matter
what the operation is (check, pause or terminate), the Job

Manager only has to communicate with the Scheduler (3)
and reports back a successful outcome to the Client (4-5).

4.4 Result Collection
The final role of the CaaS Service is addressing jobs that
have terminated or have completed their execution
successfully. In either case, data/error files meant for the
client need to be transferred to the client, Diagram 8.

Diagram 8: Job Result Collection

Clients start the result/error file transfer by contacting
the CaaS Service Interface (1) that then invokes the File
Manager (2) to retrieve the files from the cluster’s data
storage (3). If there is a transfer error, the File Manager
attempts to resolve the issue first before informing the
client. If the transfer of files (3) is successful, the files are
returned to the CaaS Service Interface (4) and then the
client (5). When returning the files, URL link or a FTP
address is provided so the client can retrieve the files.

4.5 User Interface
Users access systems based on their interfaces and how
easy they are to use. Thus, to ease the use of CaaS
service, a series of Web pages has been designed. Each
page in the series covers a step in the process of
discovering, selecting and using a cluster.

Diagram 9: Cluster Discovery – Cluster Specification

Diagram 9 shows the Cluster Specification Web page
to start cluster discovery. In Section A, the client is able
to specify attributes about the required cluster. Section B
allows the client to specify any required software the
cluster job needs. Once all attributes have been specified,
the attributes are then given to the CaaS service, which
performs a search for possible clusters and the results are
displayed in a Select Cluster Web page, Diagram 10. A
match is indicated by showing a tick in the cell or a value
of an attribute. The client can choose a cluster or go back
to refine the discovery.

Job Manager

CaaS Service
Interface

Scheduler

Example Cluster

Client

1. 5.

2. 4.

3.

Number of Nodes: 50

Amount of Memory: 50 GB

Free Memory: 50 GB

Disk Free: 50 GB

Section A: Hardware

CPU: Pentium 4 64bit GHz3.2

Section B: Software

Operating System: Windows XP w/ Service Pack 2

Discover ->

CRPIT Volume 107 - Parallel and Distributed Computing 2010

8

Diagram 10: Cluster Discovery – Cluster Selection

Next, the client goes to the Job Specification page,
Diagram 11. Section A allows specifying information
about the job. Section B allows the client to specify and
upload all data files and job executables. If the job is
complex, Section B also allows specifying a job script.
Section C allows specifying an estimated time the job
would take to complete.

Diagram 11: Job Execution – Job Specification

Once submitted, the Cluster Web service attempts to
submit the job. The outcome of the submit attempt is
shown in the Job Monitoring page, Diagram 12. Section
A tells the client whether the job is submitted
successfully. Section B offers commands to allow the
client to refresh the displayed information, pause the job,
and even halt it.

Diagram 12: Job Execution – Job Monitoring

When the job is complete, the client is able to collect
the results from the Collect Results page Diagram 13.
Section A shows the outcome of the job. Section B allows
the client to easily download the output file generated
from the completed/aborted job via HTTP or using an
FTP client.

Diagram 13: Job Execution – Result Collection

5 Proof of Concept
This paper proposes a new technology. Thus, it is
important to demonstrate that it is feasible. This proof of
concept is provided by showing the CaaS implementation
and experiments carried out.

5.1 CaaS Implementation
The CaaS service was implemented using Windows
Communication Foundations (WCF) of .NET 3.5 that
uses Web services. The CaaS is shown in Diagram 14.

Diagram 14: Cluster Service Implementation

Each module presented in Section 4 is implemented as
its own Web service. An open source library for building
SSH clients in .NET called sharpSsh (Gal 2005) was used
in the implementation of the Job and File Managers. As
schedulers are mostly command driven, the commands
and outputs were wrapped into a Service.

One final implementation change we made was adding
automatic hostfile generation. This is to prevent over
allocation of cluster nodes to the job. For example, if we
only ask for 2 nodes, a host file containing two nodes will
be generated to prevent the cluster from allocating more
than two nodes.

5.2 Environment
The experiments were carried out on a single cluster
exposed via CaaS; communication was carried out only
through the CaaS service interface. To manage all the
services and databases needed to expose and use the
cluster via CaaS, VMware virtual machines were used
extensively. Diagram 15 shows the complete test
environment with the contents of each virtual machine.

All virtual machines have 512 MB of virtual memory
and all (expect the client VM) ran the Windows Server

Job Name: Travelling Sales Man

Job Owner Joe Bloggs

Executible My_exec.exe

Section A: Identification

Section B: Job File Specification

Data files:

Proven.dat
Control.dat
Recent.dat

Add Remove Clear

Submit ->

Browse...

Script: my_script.pl Browse...

custom_set.dat Browse...

Section C: Execution Specification

Estimated Tme: 3d 14h

<- Change Clusters

Output Filename: out.dat

Outcome: Submitted Successfully

Job ID: cj404

Section A: Submission Outcome

Collect Results ->

Section B: Job Control

Report: Delegating Submission request…. Request Accepted.
Job has been started.

Refresh Pause Halt

Outcome: Completed Successfully

Time Finished: 16:59

Section A: Execution Outcome

Finish

Section B: Results Download

Report: After a total of 2 days and 7 hours, your job has
completed execution.

HTTP: http://download.clustera.org/cb404/out.dat

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

9

2003. The client virtual machine ran Ubuntu 9.04. All
Windows virtual machines run .NET 2.0; the CaaS virtual
machine runs .NET 3.5.

Diagram 15: Complete CaaS Environment

The first virtual machine is the Publisher Web service
virtual machine. It contains the cluster Connector, the
Publisher Web service and all required software libraries
to make their execution possible. The Broker virtual
machine contains the Broker and its database. The CaaS
virtual machine houses the CaaS Server and a temporary
data store. To improve reliability, all file transfers
between the cluster and the client are cached.

5.3 Cluster and Job Specifications
The cluster used in the proof of concept consists of 20
nodes plus two head nodes (one running Linux and the
other running Windows). Each node in the cluster has a
two Intel Cloverton Quad Core CPUs running at 1.6 GHz,
8 Gigabytes of memory, 250 Gigabytes of data storage
and all nodes are connected via Gigabit Ethernet and
Infiniband. The head nodes are the same except they have
1.2 Terabytes of data storage.

For our tests, an mpiBLAST application was used.
mpiBLAST is a distributed application used to find gene
sequences in genome databases: a common testing
bioinformatics. When running mpiBLAST, at least two
files are needed: the database and a sequence file. To
simplify testing, we placed the database on the cluster and
only uploaded the sequence file.

5.4 Experiments and Results

5.4.1 Publication
Due to space limitations, the process of publishing a
cluster and learning of its dynamic attributes via the
Broker are omitted. However, this idea was well tested
and the outcomes documented in (Brock and Goscinski
2009a).

5.4.2 Discovery and Selection
Diagram 16 shows the workflow behind the cluster‘s
discovery. The required cluster information was
submitted to the CaaS Service (1). We requested a cluster
with at least 20 nodes, each with at least 6 Gigabytes of
free memory and all nodes running a Linux system. The
CaaS Service then contacted the Broker with the specified

requirements (2). The Broker queries its database for
matches (3) and returns the results to the CaaS Service
(4). The cluster matches are returned in (4). If
‘information overload’ is in place, the CaaS through its
Results Organizer takes the matches, tabulates them and
returns to the client (5).

Diagram 16: Cluster Discovery

5.4.3 Job Submission
Diagram 17 shows the workflow behind submitting a job
to the cluster. First, the cluster job is specified and
submitted to the cluster (1). During submission,
parameters such as the name of the job and its required
execution time are specified. Along with the job
parameters, our job script file and data files contained in a
zip file are also submitted. To improve reliability, all files
are kept in a temporary file store (2). Once all the files
have been transferred, the CaaS service transfers the files
to the chosen cluster (3). After all files are transferred, the
scheduler is invoked and the outcome returned to the
client (4).

Diagram 17: Job Submission

Diagram 18: Result Collection

5.4.4 Collection
The final experiment commences once the Job
Monitoring Web page (Diagram 12) reports that the job
has finished. Using the Web browser, a request to collect

CRPIT Volume 107 - Parallel and Distributed Computing 2010

10

the results is to be made (1 in Diagram 18) and the CaaS
Service retrieves the result file to be stored in the File
Store (2-3).

Once the file is transferred, it is expected that the CaaS
Service show the Result Collection page (Diagram 13)
and provide hyperlinks to download the result files over
HTTP (4). After downloading the results files,
confirmation is sent to the CaaS service (5) that removes
the file from the File Store and instructs the cluster to
remove its copy (6).

5.4.5 Results
Experiment 1: Discovery: As stated in Section II, cluster
clients still have to discover clusters first. This is a
problem as there is no discovery system for clusters.
Hence, our first experiment was to see if a cluster was
easily discovered through our CaaS Technology.

Diagram 19 shows the cluster discovery page
populated with the requirements for our first mpiBLAST
job. For this experiment, we only needed four cluster
nodes, each with 8 Gigabytes of memory and did not
have more than 10% utilization of their CPUs.

Diagram 19: Specifying Cluster Requirements

After specifying our requirements, the Web page
passed the requirements to the CaaS Service for
processing. As stated in Section III, the Dynamic Broker
is first queried with the requirements and the results then
processed by the Results Organiser. Diagram 20 shows a
formatted version of the organized results.

Diagram 20: Cluster Match Results

While the Web page was designed to have ticks, it was
decided late in development to use numbers instead. The
reason for this was the numbers gave a clearer view on
how each requirement was satisfied by each cluster.

Overall, this experiment was a complete success. We
had our cluster exposed via the Publisher Web service,
and easily discovery the cluster through the CaaS Service.
This is a significant contribution as a discovery service
now exists to allow human operators to easily locate a
required cluster.
Experiment 2: Job Submission: As stated in Section II,
clusters can vary in how they are built. Specifically, not
all clusters run the same middleware. Hence this
experiment was carried out to see if the middleware
specifics could be hidden.

Even though our cluster consisted of 20 nodes, only 19
were active at the time of testing. Furthermore, for this
test, we only wanted to use two cluster nodes. Thus, a

successful outcome of this test had to show only two
cluster nodes being used and not the whole cluster.

Diagram 21 shows the Job Specification Web page
where our first mpiBLAST job was specified. For this
test, we specified an mpiBLAST launch script, a
sequence file to compare against a mouse database and
the name of an output file was specified.

Diagram 21: Specifying the Job

After completing the Job Specification Web page, our
script and test file were uploaded to the CaaS VM and
then transferred to the cluster. After all files were
transferred, the scheduler (GridEngine) was invoked.
Diagram 22 shows the resulting Job Monitoring Web
page.

Diagram 22: Monitoring the Progress of the Job

As the hostfile for our job was generated dynamically,
we could not tell its contents during the submission
process. After the completion of Experiment 4, the
contents of the host file would be checked.
Experiment 4: Results Collection: Just as how clients
need to be able to easily upload their jobs to clusters, they
need to be able to download any result or error files.

To know when our job finished, the Job Monitoring
Web page was refreshed a few times before indicating
that the second job had completed (Diagram 23).

Diagram 23: Completion Notification

Diagram 24 shows the Results Collection Web page

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

11

with a hyperlink to our result file. By clicking the link,
we were able to download our results just like any other
file on the Web.

With the completion of this experiment, our CaaS
Technology with its Web pages, as a whole was proven
successful. We were able to expose a cluster via Web
services, discover it, run multiple jobs without any
clashes, and easily get result data back. All of this was
done with no computing expertise at all.

Diagram 24: Collecting Job Results

With the completion of the job execution, we needed
to examine the hostfile used to influence how the job was
scheduled to the cluster. As Figure 2 shows, only two
nodes were listed. This is a significant advancement as
not only was the cluster made easy to use, but the client
was also reserved the nodes available at the time of his or
her request.

Figure 2: Hostfile Contents

6 Conclusion
We have achieved the goal of this project by the
development of a technology for building a Cluster as a
Service (CaaS) using the RVWS framework. Through the
combination of dynamic attributes, Web service’s WSDL
and Brokering, we successfully created a Service that
quickly and easily published, discovered and selected a
cluster, allowed to specify a job and execute it, and
finally got the result file back.

The proposed technology forms a bridge between the
dynamic attribute and Web service based Resources Via
Services (RVWS) framework and a high level abstraction
of clusters in clouds in the form of a CaaS was specified.
This outcome could have significant impact on cloud
computing.

7 References
Amazon (2007) Amazon Elastic Compute Cloud.

Accessed 1 August 2009, http://aws.amazon.com/ec2/.
Amazon (2009) EC2StartersGuide,

https://help.ubuntu.com/community/EC2StartersGuide
Apache (2009) Hadoop, Accessed 1 August 2009,

http://hadoop.apache.org
M. Brock & A. Goscinski (2008a) Publishing Dynamic

State Changes of Resources Through State Aware

WSDL. Int. Conf. on Web Services (ICWS) 2008.
Beijing.

M. Brock and A. Goscinski (2008b) State Aware WSDL.
Sixth Australasian Symposium on Grid Computing and
e-Research (AusGrid 2008). Wollongong, Australia,
82, 35-44, ACM.

M. Brock and A. Goscinski (2009) Attributed Publication
and Selection for Service-based Distributed Systems.
Int. Workshop on Service Intelligence and Computing
(SIC 2009). Los Angeles, IEEE.

P. Chaganti 2008. Cloud Computing with Amazon
Services, http://ibm.com/developerswork/architecture/
library/ar-cloudaws3/

E. Christensen, F. Curbera, G. Meredith and S.
Weerawarana (2001) Web Services Description
Language (WSDL) Version 1.1. Updated 15 March
2001, Accessed, http://www.w3.org/TR/wsdl.

K. Czajkowski, et al. (2004) The WS-Resource
Framework. 5 March 2004.
http://www.globus.org/wsrf/specs/ws-wsrf.pdf.

J. Dean and S. Ghemawat (2004) MapReduce: Simplified
Data Processing on Large Clusters. Sixth Symposiuym
on Operating System Design and Implementation, San
Francisco, CA, December, 2004.

T. Gal (2005) sharpSsh - A Secure Shell (SSH) library for
.NET. Updated 30 October 2005, Accessed 1 March
2009, www.codeproject.com/KB/IP/sharpssh.aspx.

Google (2009) App Engine. Accessed 17 February 2009,
http://code.google.com/appengine/.

A. Goscinski, M. Hobbs and J. Silcock (2002) GENESIS:
An Efficient, Transparent and Easy to Use Cluster
Operating System. Parallel Computing, Vol. 28 (2002),
No. 4, April, 557-606.

S. Jha, A. Merzky, G. Fox (2009) Using Clouds to
Provide Grids Higher-Levels of Abstraction and
Explicit Support for Usage Models, Version: 1.0, GFD-
I.150.

Microsoft (2009) Azure. Accessed 5 May 2009,
http://www.microsoft.com/azure/default.mspx.

M. Papazoglou and W-Jan van den Heuvel (2007)
Service oriented architectures: approaches,
technologies and research issues, The VLDB Journal
(2007) 16:389–415.

M. Papazoglou (2008) Web Services: Principles and
Technology, Prentice Hall.

Salesforce (2009) Accessed August 1 2009,
www.salesforce.com

VCL (2008) http://vcl.ncsu.edu/.

west-lin (mrab) 1005 $cat hostfile
west-07
west-16
west-19
west-12

CRPIT Volume 107 - Parallel and Distributed Computing 2010

12

A New Integrated Unicast/Multicast Scheduler for Input-Queued Switches

Kwan-Wu Chin
School of Electrical, Computer and Telecommunications Engineering

University of Wollongong
kwanwu@uow.edu.au

Abstract

Researchers have thus far considered scheduling unicast
and multicast traffic separately, and have paid little atten-
tion to integrated schedulers. To this end, we present a
new integrated scheduler that considers both unicast and
multicast traffic simultaneously and also addresses key
shortcomings of existing approaches. Specifically, we out-
line a scheduler that achieves 100% throughput, and un-
like existing schemes, do not require a tuning knob. More-
over, from our extensive simulation studies, we show that
it works well in uniform, non-uniform and bursty traffic
scenarios.

1 Introduction

The Internet is growing at a rapid pace, driven by the pro-
liferation of high bandwidth applications capable of deliv-
ering voice and video traffic. This is particularly evident
on Internet 2, where such applications are being used to
deliver television programs, lectures, conduct video con-
ferences, and to create interactive and collaborative re-
search environments [1]. As a result, given their high
bandwidth demands, Internet service providers are in need
of switches/routers that are capable of switching unicast
and multicast cells at high speeds.

To date, researchers have proposed a myriad of router
designs capable of switching packets or cells at speeds
ranging from gigabits to terabits per-second; see [5]. The
most popular design is based on the input queued archi-
tecture, as it has good scalability with respect to switch
size and link rate [5]. Figure 1 shows a block diagram of
one such router withN inputs andN outputs connected
by a crossbar fabric. It operates in cell mode where vari-
able length packets are fragmented into fixed size cells be-
fore traversing the crossbar. They are then re-assembled at
their respective output before leaving the router [8]. Each
input hasN virtual output queues (VoQs) for storing the
corresponding unicast cells ofN outputs. Without VoQs,
a router will experience the head of line (HOL) blocking
problem, which limits its throughput to only 58.6% [4].
Unlike previous router designs [3][15][6], which maintain
k < 2N − 1 multicast queues, our router has a single mul-
ticast queue and N staging buffers; their use will be ex-
plained in Section 3.

The scheduler is a key component of any high speed
routers. It is responsible for arbitrating cells/packets from
input ports across a switching fabric to output ports. Ide-
ally, the scheduler must have 100% throughput and low
complexity. In this respect, a significant amount of work
has been devoted to unicast scheduling algorithms, the

Copyright c©conference year, Australian Computer Society, Inc. This
paper appeared at 8th Australasian Symposium on Parallel and Dis-
tributed Computing (AusPDC 2010), Brisbane, QLD, Australia. Con-
ferences in Research and Practice in Information Technology, Vol. 107.
Dr. Rajiv Ranjan and Dr. Jinjun Chen Ed. Reproduction for academic,
not-for profit purposes permitted provided this text is included.

Figure 1: Input-queued switch architecture. Also shown
is anArbitrator managing N staging buffers.

most popular being iSLIP [10]. Similarly, a lot of ef-
forts have been devoted to developing high speed mul-
ticast scheduling algorithms. Examples include Concen-
trate, TATRA and WBA [12], ESLIP [9] and Max-Scalar
[6]. However, little attention has been paid to integrated
schedulers. That is, a scheduler that considers both unicast
and multicast cells simultaneously rather than separately.

This paper, therefore, adds to the existing state-of-
the-art by proposing an integrated scheduler that over-
comes limitations with existing approaches. Specifically,
it works in conjunction with staging buffers to overcome
the multicast cell HOL problem. Moreover, the proposed
scheduler considers the weight of both unicast and mul-
ticast cells simultaneously, and hence works well in both
uniform and non-uniform traffic scenarios. Our simulation
studies involving uniform, non-uniform and bursty traffic
sources show that our scheduler has 100% throughput, fair
to both unicast and multicast traffic, and achieves supe-
rior performance over existing schedulers. Lastly, unlike
Zhu et al. [16]’s scheduler, our scheme does not involve
a tuning knob. This is a significant advantage because it
frees the scheduler from continuously adjusting its behav-
ior with changing traffic conditions.

This paper is organized as follows. We first review ex-
isting works and highlight their limitations in Section 2.
After that, Section 3 outlines our integrated scheduler and
the aforementioned staging buffers. Then, in Section 4,
we discuss our simulation parameters. Section 5 presents
our experimentation results on a NxN switch over varying
traffic load and cell types. We then discuss our results in

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

13

Section 6, before concluding in Section 7. Note, in our
discussions to follow, we use the term router and switch
interchangeably.

2 Background

Each multicast cell has a fanout set that specifies its outgo-
ing outputs. This is the key reason that complicates mul-
ticast cells scheduling, especially when cells have vary-
ing fanout sizes that can range from 1 to N, assuming
a NxN switch. Hence, in each time slot,a router’s load
can increase byN2. Moreover, Andrews et al. [2] have
shown that scheduling multicast cells is a NP-hard prob-
lem. Besides that, there is also the HOL multicast cell
blocking problem. Assume cellC1 andC2’s fanout vector
is{0,1,2,3}and{1,2}respectively. IfC2 is queued behind
C1, then it will have to wait until all destination outputs of
C1 have a received a copy ofC1 before it receives service;
i.e., at least four time slots. Note that each cell will have
to contend with other multicast and unicast cells headed
to the same output. Clearly, a switch’s performance de-
grades when it persistently receives multicast cells with a
large fanout. One naive approach to address this problem
is to have2N − 1 queues, where each queue stores cells
headed to the same set of outputs. Unfortunately, this so-
lution is not scalable, especially in large switches. Hence,
researchers, such as [3], usek multicast queues instead,
wherek < 2N − 1. As a rule of thumb, for a switch
with N outputs, 2N multicast queues are needed to ensure
good performance. We will show in Section 3 how staging
buffers reduce this memory requirement further by storing
only the address of a multicast cell.

As mentioned earlier, most researchers have developed
schedulers that are optimized for either unicast or multi-
cast traffic, and not many are designed for both unicast and
multicast cells. In fact, only a handful of schedulers exist.
Andrews et al. [2] propose that inputs transmit unicast
traffic to outputs left unmatched by the multicast sched-
uler. Unfortunately, their approach leads to the starvation
of unicast flows, and does not address the HOL blocking
problem. Apart from that, their scheme is unfair to unicast
traffic because it gives higher priority to multicast cells.

Schiattarella et al. [13] propose an approach that first
uses a unicast and a multicast scheduler to independently
derive the maximal matchings for unicast and multicast
cells. A module then filters and integrates the matchings
found from both schedulers in a fair manner. To avoid
starvation, the module ensures edges that missed out in
the current time slot will receive service in the next time
slot. Their approach, however, is unnecessarily complex
and do not consider the weight of unicast and multicast
cells simultaneously.

Minkenberg [11] proposes to duplicate the address of
a multicast cell into VOQs that correspond to its fanout.
In effect, treating a multicast session with a fanout size of
n asn unicast sessions. They showed that their scheme is
better than the Concentrate scheme [12], but unfortunately
its performance is worst than Concentrate for input queued
switches. In particular, it does not take advantage of a
crossbar switch innate multicast ability. Apart from that,
it is not scalable, as input buffers need to have high write
bandwidth.

In [8], McKeown presents ESLIP, a multicast exten-
sion of iSLIP [10]. Each input has a multicast queue, and
a global multicast pointeraM that points to the input re-
ceiving multicast service. The pointeraM is updated in
a round robin manner after the scheduler has sent a copy
of a cell to all outputs in its fanout. In each round, in-
puts send a request to outputs corresponding to non empty
queues. Outputs then consider these requests and send a
grant to the input with the highest priority traffic. If that
happens to be a multicast cell, the output sends its grant
to the inputaM is pointing at. Inputs then send an accept
to the output corresponding to its highest priority traffic.

ESLIP, however, suffers from the HOL blocking problem,
and does not allow different multicast queues to receive
service in the same round. Moreover, like iSLIP, it does
not perform well when traffic are non-uniform.

Lastly, Zhu et al. [16] propose a scheduler, called slot-
coupled integration algorithm (SCIA), that preferentially
schedules unicast or multicast cells according to a prob-
abilistic parameter calledSm. Specifically, if a time slot
is marked as unicast, outputs will first consider unicast re-
quests from inputs before considering multicast requests.
Hence, a multicast request is only granted if there are no
unicast requests. Similarly, input ports preferentially ac-
cept unicast grants. On the other hand, if a time slot is
marked as multicast, then inputs and outputs will process
multicast requests/grants first. The main limitation with
Zhu et al.’s work is that their approach does not consider
the weight of unicast and multicast cells simultaneously.
For example, in a multicast time slot, some outputs in a
multicast cell’s fan-out vector may have higher weighted
unicast cells awaiting transmission. Lastly, their scheme
is designed for uniform traffic only, and is sensitive to the
parameterSm; as we will show in Section 5.

3 Integrated Scheduler

To address the aforementioned limitations, we propose to
have staging buffers at each input, and an integrated sched-
uler that makes use of them to schedule both unicast and
multicast cells simultaneously. Note, we assume fanout
splitting, as this ensures the switch is work conserving
and have high throughput [6][2]. Also, the switch oper-
ates without any speedup.

3.1 Staging Buffers

Each input, see Figure 1, has N staging buffers corre-
sponding to N outputs; each capable of holding the ad-
dress of one cell. We refer to a buffer corresponding to
output-jat input-iasSij , wherei andj ranges from 0 to
N − 1 for a N × N router. The aim of these buffers is
to prevent the HOL blocking problem without having to
maintain2N − 1 multicast queues. All buffers are man-
aged by the arbitrator, which is responsible for scanning
the multicast queue and determining the next multicast
cell destined for a given output. Specifically, when the
arbitrator finds an empty buffer, saySij , it starts looking
for the oldest cell in the multicast queue that is headed to
output-j. This ensures cells destined for output-jare not
transmitted out-of-order. Once a cell is found, the arbitra-
tor stores the cell’s address inSij .

Figure 2 shows an example staging buffers imple-
mentation using Ternary Content Addressable Memory
(TCAM) and Random Access Memory (RAM) [14].
When a multicast cell arrives, a tag is created using the
cell’s fanout bitmapb and its timestampts; the former
is simply a bitstring of lengthN that identifies the set of
outputs; e.g., 101 corresponds to outputs 1 and 2. The
later is the modulo of the cell’s arrival time andW ; i.e.,
ts is log2(W) in size. The resulting tag is then associated
with the cell’s memory address in the cell buffer RAM.
Lastly, ts is added to the corresponding per-output times-
tamp FIFO queues (POTQ).

The arbitrator is responsible for filling the staging
buffers with the address of multicast cells. When a staging
buffer Sj is empty, the arbitrator executes the following
steps:

1. Setts = Dequeue(TS[j]), whereTS[j] refers to
the HOLts value of outputj’s POTQ.

2. Construct tag (j, ts), and perform a TCAM lookup.

3. Copy the returned cell’s address corresponding to (j,
ts) intoSj .

CRPIT Volume 107 - Parallel and Distributed Computing 2010

14

Figure 2: An example staging buffers architecture.b cor-
responds to the fanout bitmap, andts is a cell’s arrival
timestamp (in slot).

After a cell has been transferred, the arbitrator decre-
ments the cell’s fanout counter. Here, we assume cells
have an associated counter that stores their fanout size.
Once the counter reaches zero, the arbitrator frees the
memory occupied by the cell.

3.2 Scheduler

Given aN×N switch with unmatched inputs and outputs,
the scheduler executes the following steps at each iteration
until no more matches are found:

1. Request. Each unmatched input sends a request to
every unmatched output corresponding to non-empty
VoQs. Requests are also sent for each non-empty
staging buffer corresponding to an unmatched output.

2. Grant. An unmatched output processes these re-
quests and grants the request with the highest
weighted cell. Moreover, the output informs the in-
put whether the grant is due to a unicast or multicast
cell.

3. Accept. An unmatched input first determines the
highest weighted cell with a grant. If it is a unicast
cell, the input sends an accept to the corresponding
output. However, if the grant is for a multicast cell,
the input sends an accept to all outputs that have sent
a grant for that cell. In other words, for each staging
buffer with a grant and holding the highest weighted
cell, an accept is sent to the corresponding output
port.

The time complexity at each output is O(2N), since
there are N unicast and N multicast requests. In the
worst case scenario, the convergence time is O(N) be-
cause in each round it is possible only one request is
granted. However, in our experiments, convergence time
is far smaller than N, especially when multicast cells have
a large fanout.

3.3 Example

Figure 3 shows a 3x3 input queued switch. Input-0 has
two cells for output 0 and 2, input-1 has a unicast cell
for output-0 and also a multicast cell for outputs 1 and 0.
Lastly, output-2 has a cell for output-1. In this example,
assume that the multicast cells have a higher weight than

all unicast cells; this would be the case if they did not
receive any service in previous time slots. Moreover, we
only show staging buffers at input-1.

Starting at the Request stage, all inputs send a request
message to outputs corresponding to non-empty VoQs and
staging buffers. Notice that input-1 sends three requests to
output-1, corresponding to its unicast and multicast cells.
Each output then considers the cells’ weight, as specified
in each request message, and sends a grant to the input
with the highest weight. In this example, input-1 receives
two grants from input-0 and 1 respectively, and input-0
has a grant from output-2. Finally, input-0 sends an ac-
cept to output-0, and input-1 accepts both output 0 and 1’s
grant, thereby allowing the cell to be transferred using the
crossbar’s multicast capability.

4 Simulation Methodology

To study our integrated scheduler, we used SIM [7], and
conducted experiments on aN×N switch; the value ofN
is specific to the experiment, and the crossbar connecting
them has a speedup of one. All simulation runs are for
10 million slots time, and after each run we compute the
average latency of unicast and multicast cells. We also
record the switch’s throughput – the number of matches
over the number outputs. All inputs have infinite buffer
size. In addition, we use cells’ age as weight. Lastly, we
set the maximum number of iterations in each time slot to
be five.

For comparison purposes, we implemented the follow-
ing scheduling algorithms:

• iSLIP-Emulate [11]. This algorithm creates copies
of a multicast cell, and inserts them in VoQs corre-
sponding to the cell’s fan-out vector. The VoQs are
then scheduled using iSLIP [8].

• SCIA [16]. At each input, we maintaink = 4 multi-
cast queues, similar to [16]. Cells are always added
to the shortestk queue. Apart from that, we set each
queue’s weight to be the queue length multiply by
the HOL cell’s age. To determine an appropriateSm

value, we iterate from 0 to 1 at an increment of 0.05
to determine theSm that provides the best delay to
both unicast and multicast cells for a given input load.
Lastly, in unicast time slots, we use the oldest cell
first (OCF) matching algorithm [8], and for multicast
time slots, we use WBA [12]

5 Results

We now present results from our experiments on a NxN
switch with uniform, non-uniform and bursty traffic. In
addition, we also investigate the impact of different switch
sizes.

5.1 Uniform Traffic

Our first experiment is on a 8x8 switch. We generate uni-
form Bernoulli traffic with a load of 0.1 to 0.55, and des-
ignate half of the traffic to be multicast. Lastly, each mul-
ticast cell has a random fanout ranging from 1 to 8.

Figures 4 and 5 show the delay incurred by unicast and
multicast cells respectively. We see that iSLIP-Emulate,
although low in complexity, has the highest unicast and
multicast delay. SCIA and our integrated scheduler have
comparable unicast and multicast delays. Note that, ours
has the advantage of not requiring a tuning knob. In other
words, SCIA’s performance is achieved by tuningSm it-
eratively. As the input load increases, SCIA’s multicast
delay becomes significantly higher, whereas unicast cells
experience lower delays than those scheduled by our inte-
grated scheduler. This is because SCIA has to probabilis-
tically provide time slots to service unicast cells, which

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

15

Figure 3: Unicast and multicast scheduling example.

reduces the throughput of multicast traffic, hence increas-
ing delay significantly.

 1

 10

 100

 1000

 10000

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

D
e
la

y
 (

s
lo

t)

Input Load (cells/slot)

SCIA
iSLIP-Emulate

Proposed Scheduler

Figure 4: Average delay of unicast cells. Results are for
an 8x8 switch with uniform i.i.d Bernoulli arrivals.

On the other hand, our integrated scheduler treats both
unicast and multicast cells equally, which results in both
traffic types experiencing similar delays. Apart from that,
our scheduler utilizes the crossbar fabric’s innate multi-
cast ability when the opportunity arises, thereby increas-
ing throughput. This is particularly critical during high
loads, as it delays queue instability.

In the next experiment, we study what happens when
inputs have increasing multicast cell arrivals. We fix the
input load at 0.45, and increase the percentage of multi-
cast traffic slowly from 10% to 55%. Figures 6 and 7 in-
dicate that iSLIP-Emulate has the worst performance, and
our scheduler results in both unicast and multicast cells
having similar delays. When the percentage of multicast
cells is at 35%, the queues in SCIA become unstable. In
other words, SCIA is unable to provide sufficient schedul-
ing opportunities to cells. This is exacerbated by the fact
that SCIA probabilistically prefer unicast over multicast
cells, and vice-versa. On the other hand, our scheduler en-
sures that the most urgent cells are transferred in a given
time slot, hence it is able to delay queues instability.

5.1.1 Impact of Fanout

An important observation is the impact of multicast cells’
fanout. To illustrate the detrimental effects of large fanout,
we used a 3x3 switch. Input-0 has a single multicast flow
that has a fixed fan-out of three, and an input load of 0.33,
thereby yielding an effective load of 1.0. Other inputs have
unicast flows that transmit cells uniformly across all out-
puts. In our experiments, we vary their load from 0.1 to 1

 1

 10

 100

 1000

 10000

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

D
e
la

y
 (

s
lo

t)

Input Load (cells/slot)

SCIA
iSLIP-Emulate

Proposed Scheduler

Figure 5: Average delay of multicast cells. Results are for
an 8x8 switch with uniform i.i.d Bernoulli arrivals.

 1

 10

 100

 1000

 10000

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

D
e
la

y
 (

s
lo

t)

Multicast Percentage

SCIA
iSLIP-Emulate

Proposed Scheduler

Figure 6: Average delay of unicast cells with uniform i.i.d
Bernoulli arrivals.

CRPIT Volume 107 - Parallel and Distributed Computing 2010

16

 1

 10

 100

 1000

 10000

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

D
e
la

y
 (

s
lo

t)

Multicast Percentage

SCIA
iSLIP-Emulate

Proposed Scheduler

Figure 7: Average delay of multicast cells with uniform
i.i.d Bernoulli arrivals.

to determine their impact on the multicast flow, and vice-
versa.

Figures 8 and 9 show the delay incurred by unicast and
multicast cells respectively. We see that iSLIP-Emulate
has the lowest unicast delay, but has the highest multi-
cast delay. This is due to iSLIPs inability to handle non-
uniform traffic, since input-0 has a much higher load than
other inputs. SCIA has the lowest multicast delay. This,
however, is achieved at the expense of unicast cells. In
particular, when the inputs have a load greater than 0.8,
unicast cells experience high delays. We can reduce their
delay by adjusting the parameterSm, whereby we dedi-
cate more time slots to unicast cells. Unfortunately, doing
so increases the delay of multicast cells. The proposed
scheduler, however, does not have the above limitations.
The delay experienced by unicast cells is comparable to
iSLIP-Emulate. On the other hand, even though multicast
cells using our proposed scheduler have a slightly worst
delay than SCIA, our scheduler does not cause severe per-
formance degradation to unicast cells.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
e
la

y
 (

s
lo

t)

Input Load (cells/slot)

SCIA
iSLIP-Emulate

Proposed Scheduler

Figure 8: Average delay of unicast cells. Results are for
an 3x3 switch with uniform i.i.d Bernoulli arrivals.

 0.01

 0.1

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
e
la

y
 (

s
lo

t)

Input Load (cells/slot)

SCIA
iSLIP-Emulate

Proposed Scheduler

Figure 9: Average delay of multicast cells. Results are for
an 3x3 switch with uniform i.i.d Bernoulli arrivals.

5.2 Non-Uniform Traffic

Using the same 8x8 switch, we change inputs’ arrival to
non-uniform Bernoulli traffic. Each input has a random
load to each output that ranges from 0.0 to 0.1. As before,
we designate half of the traffic to be multicast.

From Figures 10 and 11, we see that the proposed
scheduler yields the best delay for both unicast and multi-
cast cells. Comparatively, SCIA and iSLIP-Emulate have
higher delays because both of them are known to have
poor performance when traffic is non-uniform [16][8]. In-
tuitively, if a subset of inputs have a high unicast and mul-
ticast load, these schedulers will not consider these cells
in the same round. For example, in SCIA, in a multicast
time slot, it will try to maximize the number of multi-
cast matchings without any regards to inputs with higher
weighted unicast cells. In contrast, our scheduler con-
siders both cell types in the same round, and schedules
only the highest weighted cells. Moreover, it does not
try to maximize the number of matchings unless multiple
outputs deem a multicast cell to have the highest weight
amongst all HOL cells that are destined for them.

 1

 10

 100

 1000

 10000

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

D
e
la

y
 (

s
lo

t)

Multicast Percentage

SCIA
iSLIP-Emulate

Proposed Scheduler

Figure 10: Average delay of unicast cells with non-
uniform i.i.d Bernoulli arrivals.

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

17

 1

 10

 100

 1000

 10000

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

D
e
la

y
 (

s
lo

t)

Multicast Percentage

SCIA
iSLIP-Emulate

Proposed Scheduler

Figure 11: Average delay of multicast cells with non-
uniform i.i.d Bernoulli arrivals..

5.3 Uniform Bursty Traffic

We now experiment with bursty traffic on a 8x8 switch.
We start with uniform bursty traffic, where we increase
the load of each input from 0.20 to 0.40 at an increment
of 0.02. Moreover, we set the average burst size to 10
cells, and designate half the traffic to be multicast. Note,
larger burst sizes simply cause a proportional increase in
cell delay.

Figures 12 and 13 indicate that our scheduler has the
lowest delay. SCIA has comparable delays, both for uni-
cast and multicast cells, until the input load increases be-
yond 0.35. After such point, SCIA consistently prefers
multicast over unicast cells, resulting in unicast queues be-
coming unstable. In comparison, the queues in our sched-
uler remain stable for a much higher input load, and treats
both unicast and multicast cells fairly, as both cell types
experience similar delays.

 1

 10

 100

 1000

 10000

 0.2 0.25 0.3 0.35 0.4

D
e
la

y
 (

s
lo

t)

Input Load (cells/slot)

SCIA
iSLIP-Emulate

Proposed Scheduler

Figure 12: Average delay of unicast cells. Results are for
an 8x8 switch with arrival burst length of 10 cells.

 1

 10

 100

 1000

 10000

 0.2 0.25 0.3 0.35 0.4

D
e
la

y
 (

s
lo

t)

Input Load (cells/slot)

SCIA
iSLIP-Emulate

Proposed Scheduler

Figure 13: Average delay of multicast cells. Results are
for an 8x8 switch with an arrival burst length of 10 cells.

5.4 Non-Uniform Bursty Traffic

We continue the previous experiment but with non-
uniform bursty traffic. Figures 14 and 15 show the same
trend as the previous experiment. As the percentage of
multicast cells increases, SCIA spends more time schedul-
ing multicast cells at the expense of unicast cells. We
could easily adjustSm to reduce the delays of unicast cells
by providing more opportunities to schedule them first. In
practice, however, determining the best tradeoff is diffi-
cult as different flows at different points in time will have
varying delay requirements.

5.5 Throughput

A key performance metric is a scheduler’s throughput.
From Figure 16, we see that our scheduler achieves 100%
throughput when traffic is uniform and non-uniform; a sig-
nificant advantage over iSLIP-Emulate and SCIA, given
that they achieve 100% throughput only when traffic is
uniform.

5.6 Switch Size

Lastly, we investigate how a switch’s size, i.e., the num-
ber of inputs and outputs, impact our scheduler’s perfor-
mance. Figure 17 shows the delays incurred by unicast
cells on a 8x8, 16x16 and 32x32 switch. We omit the
plot for multicast cells because the delays are similar given
that our scheduler treats both traffic types fairly. We see
that our scheduler’s performance degrades with increas-
ing switch sizes. In a 32x32 switch, when the input load
reaches 0.12, there is a significant increase in delay. This
is due to multicast cell’s large fanout. In fact, a multicast
cell can have up to 32 outputs! We have also experimented
with smaller fanout sizes. Our results indicate delays of
cells for all switch sizes increase proportionally to the load
and number of outputs.

6 Discussion

Our integrated scheduler performs better than existing ap-
proaches because of the following reasons:

Firstly, it considers the weight of both unicast and mul-
ticast cells simultaneously. This is in contrast to existing
schemes that have thus far considered both traffic types
separately. From our experimentations, we found this to

CRPIT Volume 107 - Parallel and Distributed Computing 2010

18

 0

 10

 20

 30

 40

 50

 60

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

D
e
la

y
 (

s
lo

t)

Multicast Percentage

SCIA
iSLIP-Emulate

Proposed Scheduler

Figure 14: Average delay of unicast cells with non-
uniform bursty traffic.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

D
e
la

y
 (

s
lo

t)

Multicast Percentage

SCIA
iSLIP-Emulate

Proposed Scheduler

Figure 15: Average delay of multicast cells with non-
uniform bursty traffic.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

A
v
e
ra

g
e
 T

h
ro

u
g
h
p
u
t

Input Load (cells/slot)

Uniform
Non-Uniform

Figure 16: Average Throughput. Results are for an 8x8
switch with uniform or non-uniform traffic.

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.1 0.12 0.14 0.16 0.18 0.2 0.22

D
e
la

y
 (

s
lo

t)

Input Load (cells/slot)

8x8, fanout=8
16x16, fanout=16
32x32, fanout=32

Figure 17: Average delay of unicast cells in different
switch sizes; all inputs have uniform i.i.d Bernoulli traf-
fic.

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

19

be critical when both unicast and multicast cells are com-
peting for the same output. In SCIA, a tradeoff will have
to be made as to which cell type should receive service.
Moreover, this decision is not deterministic, asSm desig-
nates a slot to be unicast/multicast probabilistically. Our
scheduler, however, bases its decisions on cells’ weight.
Thereby, as our results showed, both unicast and multicast
cells have the same delay.

Secondly, it uses staging buffers to address the mul-
ticast cell HOL blocking problem. Unlike existing works
that utilizek < 2N−1 queues, our approach utilizes much
less memory. The tradeoff, however, is extra computations
involving TCAM lookups. Fortunately, these computa-
tions can be pipelined and is not critical to the scheduling
process.

Thirdly, it utilizes the crossbar fabric’s innate multi-
cast ability opportunistically. Prior works such as [16] and
[2] establish multicast matchings without considering the
weight of unicast cells. Our scheduler, however, looks at
both cell types and only enables the crossbar’s multicast
capability when multiple outputs deem a multicast cell to
be the highest weighted cell in a given round. This is par-
ticularly advantageous as it increases a switch’s through-
put.

Fourthly, it does not use a tuning knob, e.g.,Sm.
From our results, we see that when inputs have low loads,
our scheduler has comparable performance to SCIA [16].
However, we need to take into consideration that SCIA’s
performance is achieved by adjustingSm iteratively. Our
scheduler, however, does not have this limitation. Hence,
it is able to operate with changing traffic conditions.

Lastly, it supports both uniform and non-uniform traf-
fic. Existing approaches, such as iSLIP-Emulate [11] and
SCIA [16], are designed for uniform traffic. Our sched-
uler, however, works well in non-uniform traffic scenar-
ios. Specifically, in each round, it considers cells’ weight,
thereby allowing it to adapt to input loads that vary over
time.

7 Conclusions

We have presented a novel scheduler capable of schedul-
ing both unicast and multicast cells simultaneously. From
our extensive simulation studies, our scheduler demon-
strates comparable or better performance than existing
schemes during low loads, and superior performance dur-
ing high loads. More importantly, our scheduler is adap-
tive to changing traffic conditions, thereby making it suit-
able for both uniform and non-uniform traffic conditions.

References

[1] Internet 2 multicast applications.
http://multicast.internet2.edu/wg-multicast-
applications.shtml.

[2] M. Andrews, S. Khanna, and K. Kumaran. Inte-
grated scheduling of unicast and multicast traffic in
an input-queued switch. InIEEE Infocom, New
York, USA, June 1999.

[3] A. Bianco, P. Giaccone, E. Leonardi, F. Neri, and
C. Piglione. On the number of input queues to
efficiently support multicst traffic in input queued
switches. InIEEE Workshop on High Performance
Switching and Routing, Torino, Italy, June 2003.

[4] M. Carol, M. Hluchyj, and S. Morgan. Input ver-
sus output queueing on a space division switch.
IEEE Transactions on Communications, 35:1347–
1356, Jan. 1988.

[5] J. Chao and B. Liu.High Performance Switches and
Routers. Wiley-Interscience, 2007.

[6] M. A. Marsan, A. Bianco, P. Giaccone, E. Leonardi,
and F. Neri. Multicast traffic in input-queued
switches: Optimal scheduling and maximum
throughput. IEEE Transactions on Networking,
11(3):465–477, June 2003.

[7] N. McKeown. SIM: A fixed length packet simulator.
http://klamath.stanford.edu/tools/SIM/.

[8] N. McKeown. Scheduling Algorithms for Input-
Queued Cell Switches. PhD thesis, Department
of Electrical Engineering, University of California
Berkeley, may 1995.

[9] N. McKeown. A fast switched backplane for a giga-
bit switched router.Business Communications Re-
view, 27(12):1020–1030, 1997.

[10] N. McKeown. The iSLIP scheduling algorithm for
input-queued switches.IEEE Trans. on Networking,
7(2):188–198, Apr. 1999.

[11] C. Minkenberg. Integrating unicast and multicast
traffic scheduling in a combined input and output
queued packet switching system. InIEEE ICCCN,
pages 127–134, Las Vegas, USA, Oct. 2000.

[12] B. Prabhakar, N. McKeown, and R. Ahuja. Multicast
scheduling for input-queued switches.IEEE Journal
on Selected Areas in Communications, 15(5):855–
866, June 1997.

[13] E. Schiattarella and C. Minkenberg. Fair integrated
scheduling of unicast and multicast traffic in an
input-queued switch. InIEEE ICC, Istanbul, Turkey,
June 2006.

[14] K. Schultz and P. Gulak. CAM-based single-chip
shared buffer ATM switch. InIEEE Conference on
Communications, New Orelans, USA, May 1994.

[15] M. Song and W. Zhu. Throughput analysis for mul-
ticast switches with multiple input queues.IEEE
Communications Letters, 8(7):479–481, 2004.

[16] W. Zhu and M. Song. Integration of unicast and mul-
ticast scheduling in input-queued packet switches.
Elsevier Computer Networks, 50(8):667–687, Aug.
2006.

CRPIT Volume 107 - Parallel and Distributed Computing 2010

20

A Dynamic, Decentralised Search Algorithm for Efficient DataRetrieval in a
Distributed Tuple Space

Alistair Atkinson

Eastern Institute of Technology
Hawke’s Bay, New Zealand

Private Bag 1201, Hawke’s Bay Mail Centre, Napier 4142
Email:aatkinson@eit.ac.nz

Abstract

This paper presents an algorithm which may be used to
efficiently search for and retrieve tuples in a distributed
tuple space. The algorithm, a core part of the Tuple-
ware system, is based on the success or failure of previ-
ous tuple requests to remote nodes in the system, and this
data is used determine the relative probability of partic-
ular remote nodes being able to fulfil subsequent future
requests. The logic of this algorithm is distributed and de-
centralised: each node dynamically calculates its relation-
ship with other nodes at runtime. The behaviour of the
algorithm using two applications is analysed, and shows
significant improvement in terms of efficiency and perfor-
mance compared to comparable tuple space implementa-
tions.

Keywords:tuple space, data retrieval, locality, distributed
computing.

1 Introduction

This paper describes a search algorithm for efficiently re-
trieving tuples on a cluster-based distributed tuple space.
This algorithm forms one of the core part of the Tupleware
cluster middleware, a high-level description of which can
be found in [3].

The Tupleware system was implemented with the goal
of achieving a scalable platform for the implementation
and execution of parallel array-based applications, whilst
maintaining the simplicity and transparency of the original
tuple space paradigm [7].

In order to achieve scalability, it was decided to use a
decentralised approach, and to distributed the tuple space
across nodes in the cluster. It followed, then, that it would
be necessary to store and search for tuples in the most ef-
ficient manner possible, and it is for this reason that the
search algorithm presented in this paper was developed.

To evaluate the performance and scalability of Tu-
pleware (and its search algorithm) the performance of
two non-trivial applications are presented. Ease of pro-
grammability is discussed in the previous paper cited
above.

The contribution of this research is that it provides
an investigation into a concrete implementation of dis-
tributed tuple space using non-trivial data-parallel appli-
cations. This area of research, while studied previously
as we will see in Section 3, often focusses on theoretical
models which lack a concrete implementation, and others
seek to provide a more general-purpose platform. This re-
search project has focussed on a particular class of appli-
cations in order to exploit their common characteristics,

Copyright c©2010, Australian Computer Society, Inc. This paper ap-
peared at the Eighth Australasian Symposium on Parallel and Distributed
Computing (AusPDC2010), Brisbane, Australia. Conferences in Re-
search and Practice in Information Technology (CRPIT), Vol. 107, Jinjun
Chen and Rajiv Ranjan, Ed. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

which has informed the development of the search tech-
niques being presented.

2 Motivation

Tuple spaces, first introduced by Gelernter’s Linda coor-
dination language [7], are recognised as offering many ad-
vantages over the more common message-passing model
as a distributed computing paradigm. These advantages
include: a decoupling of the computations and coordina-
tion parts of a parallel program, both temporal and geo-
graphic distribution, loosely-coupled interaction between
processes, and a higher level of abstraction which unbur-
dens the programmer from needing to explicitly deal with
lower-level details of inter-process communication.

However, the adaption of the tuple space model to a
distributed environment poses some additional challenges
compared to its implementation on multiprocessor com-
puters. Namely, the increase in latency and relatively re-
stricted network data transfer rates cause any operations
involving network communication to become relatively
expensive, and also distributed systems generally need to
be able to scale to large number of nodes. This means
that the available network bandwidth must be used as ef-
ficiently as possibly, and thus it is necessary to minimise
the number of communication events in a given system in
order to achieve this.

These limitations were illustrated in [18], which de-
scribed the scalability of various tuple space implemen-
tations under varying loads, and showed the scalability
of the included systems to be relatively poor. A study
presented in [15] also outlined the issues involved with
efficiently implementing a tuple space in a distributed
environment, and presented a performance evaluation of
an unmodified JavaSpaces system using applications with
similar characteristics to those presented in this paper. The
results of this evaluation showed the limitations of a cen-
tralised tuple space for tightly-coupled applications, and
its more commendable performance for loosely-coupled
replicated-worker style applications.

These factors are what motivated this particular re-
search, which addresses these issues, and proposes a
search algorithm suitable for use in a distributed tuple
space which can be utilised for array-based parallel ap-
plications.

3 Previous Work

Some of the more notable systems which feature dis-
tributed or multiple tuple spaces are briefly described in
this section. The systems included can be contrasted in
terms of the transparency of their distribution, the logical
integration of the tuple space(s), and whether or not the
system logic is centralised or decentralised.

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

21

3.1 Multiple Tuple Spaces in Linda

Multiple Tuple Space Linda [14] (usually abbreviated to
MTS-Linda) was one of the earliest attempts to add multi-
ple tuple spaces to the original Linda model. MTS-Linda
incorporates tuple spaces which are treated as first-class
objects, and can be manipulated by the programmer to suit
an application’s requirements. The use of multiple tuple
spaces allowed data (represented as passive tuples), and
processes (represented as active tuples), to be grouped and
manipulated as a whole. As tuple spaces are treated as first
class objects, each tuple space is simply conceptualised as
a ”local data structure within a process” [14], which goes
some way towards raising the level of transparency of the
system’s distribution.

Tuples which reside in other (non-local) tuple spaces
may also be accessed, provided they are within the ”con-
text tuple space” of the process making the access request.
That is, multiple tuple spaces may belong to the same con-
text, and processes may opt to retrieve tuples from either
its local tuple space, or from a tuple space contained in the
same context. In this way, multiple tuple spaces are added
in a hierarchical manner, rather than the flat, or disjoint
way they have been incorporated in some other systems.

Another attempt at implementing multiple tuple spaces
for Linda was by Rowstron & Wood [16], who adapted
the Linda model to networks of heterogeneous worksta-
tions. This system did not propose a new way of adding
multiple tuple spaces to the system, but simply assumed
that they existed. The main contribution this system
made was the addition of new tuple space access primi-
tives, namely bulk retrieval operationscollect() and
copy-collect(). The former operation moves a set
of matching tuples from one tuple space to another, and
the latter performs a similar function, except matching tu-
ples are copied from one tuple space to another [17]. This
implementation classifies tuple space as either local or re-
mote, the main difference being that tuples stored in a lo-
cal tuple space are not accessible by remote nodes in the
system, whereas those stored in a remote tuple space do
not have this restriction. Further, local tuples are stored lo-
cally, in the local processes address space, whereas remote
tuples are stored on remotetuple space servers, which
generally reside on separate, dedicated nodes on the net-
work. The decision as to whether a given tuple is classi-
fied as being local or remote is performed dynamically at
runtime by the system kernel.

The bulk operations allowed the movement of multiple
tuples using only a single operation, whereas in the orig-
inal Linda model this would have required multiple invo-
cations of the tuple spaces access operations. This factor,
along with the optimisation of the locality of stored tuples,
allowed the system to make more efficient use of the net-
work, and to realise some significant performance gains
compared to traditional implementations [16].

3.2 SwarmLinda

In terms of algorithmic approaches to tuple search and re-
trieval in systems with multiple or distributed tuple spaces,
there are a small number of proposed systems at the time
of writing that have this as their focus. The most notable of
these is arguably the SwarmLinda distributed tuple space
described in [11].

SwarmLinda employs a tuple storage and retrieval al-
gorithm inspired by the collective intelligence displayed
by swarms of ants. SwarmLinda is characterised by agents
(in this case, ants) acting individually, but whose individ-
ual actions combine to exhibit a collective intelligence.
These agents ”act extremely decentralised” and perform
their actions ”by making purely local decisions and by tak-
ing actions that require only a few computations” [5].

The collectively intelligent behaviour displayed by
these ant swarms relates to the locality or tuple storage,
and efficient tuple retrieval from the network. In short,

when a new tuple is produced, it will be stored by one
of the ’ant’ agents on a node which stores tuples with the
most similar characteristics to the new tuple. Tuples with
a particular characteristic emit a ’scent’, and this scent is
used by the agents when they need to retrieve a tuple. The
characteristics of the tuple to be retrieved, along with the
scent being emitted, is used to guide the search of the
agent. It is argued that a SwarmLinda system will dy-
namically adapt itself to the characteristics of the tuples
being stored, so that tuple retrieval operations will tend
towards optimal over time. However, at the time of writ-
ing, these ideas have not been implemented in a concrete
system, and as such no performance data are available to
determine their effectiveness.

3.3 Scope

Scope [12] is a formal model for the addition of multi-
ple tuple spaces to Linda-like systems. It aims to address
the scalability problem of Linda, and also to increase the
expressiveness of Linda-like operations so as to enable op-
erations such as transactions, and prevent semantic limita-
tions such as the multiple-read problem. Most relevant to
the research presented in this paper, however, is the gen-
eralised way in which Scope handles the issue of multiple
tuple spaces, in particular its idea of ”overlapping” tuple
spaces.

Multiple spaces have traditionally been added to tuple
space systems in one of two way: by nesting spaces hier-
archically, as in MTS-Linda, or by simply adding disjoint
spaces which have no logical relationship, as in JavaS-
paces [12].

Scope presents a generalised approach to the addition
of multiple spaces, introducing the idea of overlapping tu-
ples spaces. This allows some parts of each space to be
shared, and other parts to be separate. In concrete terms,
tuples are able to belong to more than one space at a time.
Essentially, each ”portion” of tuple space is represented by
a named scope, and these portions can be combined and
arranged based on defined scope operations. These oper-
ations are based on the set operations union, complement
and intersection, and can be used to define tuple mem-
bership to one more more scopes. The expressiveness of
Scope allows it to implement hierarchical and disjoint tu-
ple spaces in addition to overlapping spaces.

A concrete implementation of Scope is presented in
[13]. However, no performance results are available for
any Scope-based implementation, and no subsequent re-
search seems to have been done at the time of writing.

3.4 JavaSpaces

JavaSpaces [10] is an implementation of the spaces
paradigm from Sun Microsystems. Specifically, it is a ser-
vice which forms part of the Jini distributed software ar-
chitecture. It provides a stand-alone object space, called a
JavaSpace.

The system may have more than one space, however
each space is a separate entity and their respective roles
in the system are not coordinated. Each application must
contain the logic for utilising the available JavaSpaces in-
frastructure.

Like most derivative implementations of the tuple
space model, JavaSpaces is an effective platform for im-
plementing a range of distributed applications and utilis-
ing common design patterns. In particular, it has been
shown in [2] to be ideally suited to the Master/Worker
style of parallelism, particularly coarse-grained parallel
applications. For applications which are more fine-grained
or tightly-coupled, JavaSpaces can experience scalability
problems due the the increased communication demands
inherent in these applications (see, for example [18]).

CRPIT Volume 107 - Parallel and Distributed Computing 2010

22

4 Tupleware Overview

Tupleware is a library and runtime system which provides
a distributed tuple space platform for computing clusters.
It is aimed specifically at array-based numerical and/or
scientific applications, which exhibit common character-
istics that may be exploited in order to optimise the com-
munication patterns between cluster nodes.

Tupleware has previously been described in [3], so the
entire system will not be covered in great detail again here.
Instead, the description will be restricted to a high-level
overview of the operation of the main components of the
system only, in order to inform the discussion of the per-
formance results. For a more detailed description refer to
the previous publication referenced above.

4.1 System Architecture

A complete Tupleware system consists of a collection of
nodes, each of which hosts its own local partition of the
tuple space. These local partitions, combined, constitute
the whole (distributed) tuple space.

The main components of the Tupleware architecture
consist of the following: a runtime system, a tuple space
service, and tuple space stub objects. These components
form a layered architecture upon which an application
module can execute. An example Tupleware system con-
sisting of two nodes is illustrated in Figure 1.

ServiceStubServiceStub

RuntimeRuntime

ApplicationApplication

Figure 1: Architecture of a two-node Tupleware system.

4.2 System Components

The main components are briefly described as follows:

4.2.1 Tuples & Templates

The fundamental data object in a tuple space system is
a tuple, which are used to encapsulate one or more data
objects. A tuple has one or more fields each of which
contain a value. Fields should not contain anynull values,
and tuples are treated as immutable objects.

Templates are used to perform content-based associa-
tive lookup on tuples. Templates are similar to tuples
in that it encapsulates a set of data fields. However, un-
like a tuple, some (or all) of these fields may be assigned
null values, denoting wildcards which may match against
any value during associative lookup. Associative lookup
involves the use of thematches() method, which de-
termines whether a template matches a given tuple. The
matching function has the same semantics as the original
Linda: a template must be an equivalent length, and its
specified values must be equal to a given tuple in order to
positively match.

4.2.2 Local Tuple Space

A local tuple space provides the basic functionality re-
quired for tuple storage and lookup on a single node. The
local space maintains all of the stored tuples on node, and
is searchable by a node’s service in response to tuple re-
quests from remote nodes.

The local tuple space is thread-safe, and, in most in-
stances,uses the first three fields of a tuple as the key to
a hash table which references the tuple data itself. The

reasoning behind this was that in almost all applications
relevant to those targetted by Tupleware, the first three el-
ements are always those used to identify and index the
array, and, in the case of the ocean model, more than one
iteration of previous array values will need to be stored
(usually two, and sometimes three).

An example of this arrangement is shown in Figure 2.

"A00"

"A01"

"A02" <"A",0,2,1.42,2>

<"A",0,1,1.38,2>

<"A",0,0,1.34,2> <"A",0,0,1.93,1>

<"A",0,1,1.97,1>

<"A",0,2,2.01,1>

<"A",0,0,2.20,0>

<"A",0,1,2.24,0>

<"A",0,2,2.28,0>

"Anm" <"A",n,m,data,2> <"A",n,m,data,1> <"A",n,m,data,0>

Keys Values

Figure 2: Local tuple storage using a hash table.

4.2.3 Inter-node Communication

Communication between nodes is carried between the
stub and service components of the system. All communi-
cation instances are initiated by the stub objects, which
send requests for tuples across the network to the ser-
vice running on a remote node. This service provides the
means by which remote nodes may search other nodes’ lo-
cal tuple spaces, and always answer queries directly rather
than forward unfulfillable requests.

4.2.4 Runtime System

The Tupleware runtime system contains the core system
logic, and control the operation of the lower level com-
ponents such as stub objects and each node’s local tu-
ple space. The runtime system initiates and controls the
search and retrieval of remote tuples, using the search
function presented in the following section. Each nodes’
runtime system maintains a collection of stub objects,
each of which corresponds to a remote node in the sys-
tem.

Finally, the runtime system presents an API for use by
the top level application layer. It is the only interface into
the Tupleware system for an application, and is largely
responsible for maintaining the transparency of the tuple
space’s distribution on the cluster.

4.2.5 Application Processes

At the highest layer, application processes implement the
application logic which in turn interfaces with the underly-
ing runtime system. Applications have a reasonably trans-
parent interface to the distributed Tupleware system, and
are able to make use of the standard Linda-style opera-
tions.

5 Search Algorithm

5.1 Overview

The principle behind the search algorithm is to minimise
the number of communication instances required to re-
trieve a tuple by targetting retrieval requests to those nodes
which have the highest probability of being able to sat-
isfy the request, based on the success of previous requests.
This technique was adopted due to the nature of the ap-
plications at which Tupleware is targetted for use. These
are generally array-based applications in which the array
is decomposed into individual regions, and each region is
processed in parallel.

The characteristics of applications such as these is that
any communication between processes is going to tend

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

23

to occur between those processes which are processing
”neighbouring” regions of the array, whereas nodes pro-
cessing unrelated regions of an array are going to tend to
communicate very rarely, if at all. It is these observed
characteristics that we wish to be reflected in the tuple
search patterns carried out by the runtime, and the search
function provides the platform for achieving this.

5.2 Search Algorithm Operation

An executing Tupleware system consist of individual
nodes, each with its own runtime system, each of which
will need to communicate with a subset of all nodes in
the system almost exclusively, and rarely if at all with all
other nodes. These groupings, or clusters, of nodes will
emerge quickly during the execution of an application as
each individual runtime system dynamically adapts to the
patterns of communication instances it is tasked with car-
rying out.

Underpinning the operation of the search algorithm is
asuccess factorwhich is associated with each tuple space
stub object maintained by the runtime system. The success
factor is a numerical value between zero and one, and is
used to denote the likelihood of the tuple space service
associated with a given tuple space stub being able to fulfil
a request for a tuple. A higher success factor represents
that there is a greater chance of success, and vice versa.

At the beginning of an application’s execution, each
stub has a success factor of 0.5 as there are no previous
requests from which to calculate another value. A value
of 0.5 is meant to represent an intermediate chance of suc-
cess. Due to all stubs starting with an equal success factor,
the initial requests made are random, however the success
factor will be recalculated based on the success or failure
of these requests, and quite quickly a distinct ordering, or
ranking, emerges which can be used to prioritise subse-
quent requests.

The recalculation of the success factor occurs every
time a stub is used to perform a request, and is based on
the following equation:

S=

{

S+(1−S)×A Success
S−S×A Failure

where:

• S is the success factor, and

• A is the adjustment factor.

The adjustment factor is a floating point value between
zero and one used to specify by how much the success
factor should be adjusted each time it is recalculated. This
value will determine how quickly the success factor moves
towards either one or zero, or in other words, by how rep-
resentative a successful request is in terms of the prioriti-
sation of subsequent requests.

This value should be chosen based on the application
and the number of processes in a system. If there is a weak
relationship between the data being computed on each
process, then each process may ultimately end up needing
to communicate with a relatively large number of other
processes. In cases such as this a small adjustment factor
should be used, as one successful request to a remote tuple
space does not imply that there is a much greater proba-
bility of success for future requests. However, if there is
a tight relationship between the data segments being com-
puted by each process, then it follows that these processes
will likely communicate very frequently, and that a suc-
cessful request should have a higher bearing on the prob-
ability of success for subsequent requests.

In practice, an adjustment factor of 0.2 was used as it
reflects the characteristics of these particular applications.
An adjustment factor of greater than 0.5 would reflect a

fairly volatile system with a very weak relationship be-
tween processes, where a value of 0.1 or 0.2 would repre-
sent a more stable relationship.

An an application performs each iteration of its pro-
cessing, the success factor will be recalculated, and over
a relatively small number of iterations, the success fac-
tor associated with a node’s neighbouring nodes will be
greater than non-neighbouring nodes. An example of this
is illustrated in Figure 3.

Node11

Node15Node14

0.30

0.300.30

Node7

0.30

Node3

0.30
Node2

Node6

Node1

0.90

Node4

0.90

Node0

0.70

Node10

0.90

Node9

0.70

Node8

0.70

0.90

0.70

Node5

0.30

Node13

0.30

Node12

Figure 3: The success factor associated with a node’s
neighbouring nodes.

5.3 Benefits of the search algorithm

The search algorithm being presented here can be con-
trasted with the one used previously, which relied on a
most-recently-successful approach to order tuple requests
to remote nodes. The problem with this approach was that,
while it was more effective than a blind search, it took
into account only the success of the immediately previous
search.

This was a non-optimal solution for the types of appli-
cation being targetted by this system, especially in the case
of the ocean model, as quite often data retrieval will in-
volve several requests to several neighbouring nodes (one
for each boundary being updated). In these cases an null
response from a remote node does not necessarily mean
that the request cannot be fulfilled by the said node in the
future, but rather often it is that the required tuple sim-
ply has not yet been produced at the current point in time.
However, the result would be, using the most-recently-
successful approach, for this particular remote node to be
treated as though is should be given a much lesser prece-
dence for subsequent searches, which is not necessarily
the desired outcome.

On the other hand, the search algorithm being pre-
sented here imposes much less drastic modification to
search precedence, as it takes into account all historical
retrieval requests (with a greater weight to those carried
out more recently). The search precedence given by re-
mote nodes’ associated success factors provides a more
accurate reflection of the actual probability of a successful
tuple retrieval.

Another benefit implicit to this search algorithm is its
decentralised nature: updates to the success factor associ-
ated with each remote node is performed by each individ-
ual runtime without requiring any sharing of global state
information between nodes. Put simply, each node main-
tains its own unique ”view” of the cluster’s tuple storage,
based on its own search history. This eliminates any over-
head associated with the transmission of global state in-
formation.

CRPIT Volume 107 - Parallel and Distributed Computing 2010

24

Finally, the search algorithm executed dynamically and
allows for changes and reconfigurations to tuple storage
on the cluster. If the storage characteristics change, the
groupings illustrated in Figure 3 will alter to reflect this.

5.4 Summary

In this section we have presented a dynamic, decentralised
search algorithm which is used to guide searches for tu-
ples stored on remote nodes of a cluster. The algorithm
has been contrasted with the one previously used by the
Tupleware system, and its benefits discussed.

In the following sections we present the performance
characteristics of the system using two non-trivial appli-
cations.

6 Applications

6.1 Overview

Two applications were used to test the behaviour of Tuple-
ware: a 2-D ocean modelling application, and a parallel
sorting application based on a modified quicksort. These
applications were chosen for their contrasting characteris-
tics, namely their different levels of granularity and com-
munication characteristics. However, both of these appli-
cations involve processing segments of an array in paral-
lel, and both are able to benefit from the search algorithm
being presented in this paper.

Each application is briefly described below.

6.2 Ocean Model

The ocean model is a two-dimensional simulation of an
enclosed body of water. The model calculates the water
current velocity and surface elevation based on a given
wind velocity and bathymetry.

The body of water is represented by the application as
a 2-D grid, and each cell in the grid represents a single grid
point. Grid points each individually store descriptive data,
including the depth of the water at that point, along with
the surface elevation and current velocity. Wind velocity
is assumed to be constant across the grid. The variables
stored in each grid point are staggered in such as way that
theu andv variables are associated, respectively, with the
x-axis and y-axis edges of each grid point. Theetavari-
able is representative of the centre point of each grid point.

When executed, the model iterates through a specified
number of time-steps; and at each time-step, the surface
elevation and current velocity values of each grid point
are recalculated based on the values stored at neighbour-
ing grid points. This process continues for the specified
number of time-steps, at which point the model should be
in a steady-state and thus finished.

The model is parallelised through domain decomposi-
tion of the grid, which splits the grid into a number sepa-
ratepanels, up to the number of nodes available for pro-
cessing. Each panel is assigned to a specific node, whose
responsibility it is to perform the processing on the panel.
As each panel represents only part of the complete grid,
at each iteration it is necessary for the boundary values of
each panel to be retrieved from neighbouring panels. This
process is illustrated by Figure 4, which shows a 9x9 grid
which has been decomposed into three panels. Each 9x3
panel has a halo region, represented by the shaded cells,
whose values are updated after each iteration of the model.
The arrows between neighbouring halo region cells repre-
sent the communication instances which are involved in
each boundary update.

6.3 Quicksort

Quicksort [9] is a widely used sorting algorithm with an
average case execution time ofO(nlogn). It is an effi-

Panel 1 Panel 2 Panel 3

Figure 4: Updating panel boundary values.

cient general-purpose sorting algorithm which rarely ex-
hibits its worst-case execution time.

There are several characteristics of the quicksort al-
gorithm which led to it being used in the performance
evaluation which follows. Firstly, parallelisation of quick-
sort (and modified and implemented here) is reasonably
straightforward, and produces processing tasks which are
loosely-coupled and have only moderate data dependen-
cies. Secondly, by modifying the quicksort algorithm
so that partitioning ends when an array segment length
reaches a certain predefined threshold, it is possible to
adjust the granularity of the parallelism exhibited by the
sorting algorithm. This feature is useful as it allows us to
evaluate the performance of the system with various levels
of communication frequency.

The algorithm used to evaluate the system in this pa-
per is a modified version of quicksort. As described
above, unsorted arrays are repeatedly partitioned until
their length is less than or equal to a predetermined thresh-
old value. At this point, partitioning ends and the remain-
ing unsorted array segment is sorted using some other se-
quential algorithm; in this case, insertion sort [6].

The ability to adjust the granularity of the application
in this manner is useful, as it assists in determining the
true scalability of the system and at which point the com-
munication requirements begin to outweigh the benefits of
the distribution of the application.

7 Performance Evaluation & Analysis

7.1 Metrics

The metrics used to evaluate the behaviour and perfor-
mance of Tupleware as presented in this paper are the
runtimes, which are the wall-clock timings of the execu-
tion of various part of the application, and from which we
can derive thespeedupdelivered by the Tupleware system.
Speedup as used here does not differ from its standard us-
age in this area, that being the ratio of sequential runtime
to parallel runtime [4, p. 74].

From these metrics, we can then make assertions re-
garding thescalabilityof the system as a whole. There are
two aspects of scalability which will be outlined: scalabil-
ity in terms of the number of processors, and scalability
in terms of the problem size. The former is directly re-
lated to speedup and Amdahl’s Law [1]; if a parallel pro-
gram tends towards a speedup ofN when executed onN
processes, then it is said to be scalable. The latter aspect,
scalability in terms of problem size, is concerned with how
effectively the problem can be split amongst the available
processors. That is, if a parallel system can execute a prob-
lem of sizeS in a time ofT, then if the size ofSdoubles
we wish the execution time to be no greater than 2� T.
If doubling the problem size results in significantly more
than doubling the total runtime, the system would not be
scalable in terms of problem size.

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

25

7.2 Execution Environment

The performance testing was conducted on a sixteen-
node cluster, with each node consisting of a Pentium
4 (3GHz) processor with 1GB of memory, and running
Ubuntu Linux 8.04 (kernel 2.6) along with Java 6 update
10. Nodes were connected by a 100Mbps Ethernet net-
work. Performance profiling was carried out using the
Clarkware Profiler(Clark, 2008), which is able to mea-
sure the total and per-iteration runtimes (wall-clock time)
between specified points in a program. Each process was
executed with the following Java command-line options:
-Xms512M to set an initial heaps size of 512MB, and
-Xmx2048M for a maximum heap size of 2GB.

7.3 Ocean Model

The ocean model was tested on a varying number of
nodes, from one through to sixteen. When discussing the
number of nodes taking part in the system, we are speci-
fying the number of worker nodes. In all Tupleware ap-
plication these always exists exactly one master process in
addition to one or more of the worker processes.

The size of the grid was also varied for experimental
purposes, ranging from 1200x1200 through to 2400x2400
in increments of 200x200. This gives a substantial range
of grid sizes, keeping in mind that the total number of grid
points increases exponentially as the grid grows larger;
this is illustrated in Table 1, which also details the amount
of raw data stored in each size grid. A 2400x2400 grid
was the largest possible for execution before some nodes,
particularly the master node, began to use virtual mem-
ory, which began to artificially effect the behaviour of the
system.

Grid Size Grid Points (million) Data (MB)
1200x1200 1.44 87.9
1400x1400 1.96 119.6
1600x1600 2.56 156.3
1800x1800 3.24 197.8
2000x2000 4.00 244.1
2200x2200 4.84 295.4
2400x2400 5.76 351.6

Table 1: Total grid points and data size.

The number of timesteps completed by the model re-
mained constant at fifty; this gave the system sufficient
parallel execution in order for a rigorous performance
evaluation to be performed.

7.3.1 Results

The overall speedup of the ocean model application is
shown in Figure 5.

This gives us a high high-level overview of the be-
haviour of the system, however it would be useful to sepa-
rate the performance of the systems in terms of its sequen-
tial and parallel execution. The runtimes of each of these
execution phases are illustrated in Figures 6 and 7.

As we can see, an increase in the number of nodes sub-
stantially decreases the time taken for the initial applica-
tion data to be delivered to each worker node, and for the
final processed panels to be returned to the master node.
This would most likely be due to the use of a switched net-
work, which would allow data to be sent simultaneously
to each worker node over each point-to-point circuit. In-
creasing the number of worker nodes also reduces the size
of data being transferred, as the width of each panel would
be smaller.

These figures also show that in the cases of fourteen
and sixteen nodes, the decrease in sequential runtime be-
comes negligible, or in some cases increases. This is

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Nodes

Ocean Model Speedup (Total)

1200
1400
1600
1800
2000
2200
2400

Figure 5: Ocean model’s overall speedup.

 0

 50

 100

 150

 200

 250

 300

 0 2 4 6 8 10 12 14 16

T
im

e
(s

ec
s)

Nodes

Ocean Model Sequential Runtime (secs)

1200
1400
1600
1800
2000
2200
2400

Figure 6: Sequential runtimes (secs) for varying number
of nodes in the ocean model.

likely due to the reliance on the master node, which is
responsible for either transmitting or receiving all of the
data. If we extrapolate these results to a larger number of
nodes, then it is likely that these times would continue to
slightly increase. However, quite plainly there are signif-
icant speedup benefits attained by adding extra nodes to
the system in terms of these sequential runtimes.

Following on from the sequential runtime of the ap-
plication, we can turn our attention to the behaviour dur-
ing parallel execution. During this phase of execution, the
worker nodes behave in a completely decentralised way,
and communicate directly in order to share boundary val-
ues at each timestep.

The first conclusion which can be drawn from this
result is that increasing the number of nodes decreases
the width of each panel, resulting in fewer grid points
which need to be computed, and hence less time spent
performing processing. However, with the size of each
panel’s boundary region remaining the same, the ratio
between computation and communication inevitably be-
comes smaller.

Secondly, an increase in the number of nodes also in-
creases the likelihood that some required boundary values
will not be available between timesteps, resulting in ad-
ditional time a node must spend searching for or waiting
for the values to become available. These factors combine
to produce a disappointing level of efficiency during the
parallel phase of execution.

However, it can also be seen that an increase in grid
size generally results in increased efficiency, something
particularly apparent for systems with six or less nodes.
This is due to an increased grid size resulting in a lin-
ear increase in boundary size along with an exponential

CRPIT Volume 107 - Parallel and Distributed Computing 2010

26

 0

 100

 200

 300

 400

 500

 0 2 4 6 8 10 12 14 16

T
im

e
(s

ec
s)

Nodes

Ocean Model Runtimes (Parallel Execution)

1200
1400
1600
1800
2000
2200
2400

Figure 7: Parallel execution runtimes of the ocean model.

increase in the number of grid points being computed.
Whilst it would have been an interesting exercise to ex-
periment with grid sizes greater than 2400x2400, it was
at this point that the cluster nodes began to need to use
virtual memory, which artificially effected the results.

7.3.2 Ocean Model Summary

The results of the ocean model’s performance allow us to
conclude the following:

The Tupleware system does provide the application
with an overall speedup gain by distributing the applica-
tion and processing it in parallel. However, the level of
speedup is limited, with the best result being experienced
with the largest grid size used.

A significant part of this speedup gain is due to the de-
crease in time taken to perform the beginning and end se-
quential stages of the application’s execution. This is due
to the increased efficiency of network data transfer and, as
the number of nodes is increased, smaller total panel sizes.
Thus, the runtime of this sequential phase is not fixed, de-
spite it being reliant on the single worker node.

The parallel phase of execution also provides a limited
level of speedup, and this is due to smaller panels requir-
ing less time to compute. However, the increased time
spent on network communications as the number of nodes
grows cancels out these benefits.

The overall performance of the ocean model is to be
expected given the application’s characteristics, in partic-
ular its tightly-coupled nature and the fact that each node’s
execution is synchronised to a high degree with the nodes
that are processing neighbouring panels.

Some encouragement can be taken from the fact that
scalability tends to increase along with the problem size.
Therefore we can conclude that the scalability would
likely continue to improve if the grid size were increased
to greater than 2400. However, the increase would need
to be very significant, as the efficiency of this application
clearly showed that the communications time significantly
dominated the processing time of the application.

7.4 Modified Quicksort

Much like the ocean model, the sorting application was
tested on a varying number of worker nodes, from one
through to sixteen, with an additional master node to set
up and finalise the application’s execution.

7.4.1 Results

The total runtimes of the sorting application are presented
in Figure 8.

 0

 50

 100

 150

 200

 0 2 4 6 8 10 12 14 16

T
im

e
(s

ec
s)

Nodes

Parallel Sorting Total Runtime

35K
50K
65K

Figure 8: Total runtimes of the parallel sorting application.

As can be seen from the runtime for a single node sys-
tem, sorting the array with the algorithm being used re-
quires a significant amount of processing. Comparing this
against a sixteen node system, we can see that the distri-
bution and parallelisation of the application results in a
substantial decrease in the overall runtime.

As a whole, the speedup experienced by the applica-
tion is very pleasing. These speedup values can be found
in Figure 9.

 0

 5

 10

 15

 20

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Nodes

Parallel Sorting Speedup (Total)

35K
50K
65K

Figure 9: Total speedup of the sorting application.

In the instances of a thirty-five thousand threshold be-
ing used, the speedup peaks at 9.95 on twelve nodes be-
fore decreasing on fourteen and sixteen node systems.
Nonetheless, this still provides a reduction in total runtime
from 94.3 seconds to 9.5 seconds, a total decrease of 84.8
seconds. Considering that this threshold size is the small-
est used for testing, and entails the greatest amount of net-
work communication relative to other thresholds used, this
is a pleasing result.

The two other threshold values used for testing gave
a constant speedup up to sixteen nodes. In particular, for
a threshold of sixty-five thousand, the speedup is near to
optimal, and provides a total reduction in runtime of 181.3
seconds from 193.7 seconds on a single node system to
12.4 when sixteen nodes are used.

Parallel runtime is the sum total of the time spent per-
forming network communications and processing once an
initial unsorted array segment has been obtained. Network
communications consist of obtaining additional unsorted
segments once a worker’s own storage in local tuple space
has been exhausted, and also transferring sorted segments
back to the master process. This will be affected by the
threshold size: a smaller threshold requires more frequent
communication with the master process, whereas a larger
threshold requires less frequent. The speedup in terms of

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

27

the parallel phase of execution is illustrated in Figure 10.

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Nodes

Parallel Sorting Speedup (Parallel Execution)

35K
50K
65K

Figure 10: Speedup of parallel phase of sorting applica-
tion execution.

As this shows, the speedup of the parallel phase of ex-
ecution closely correlates to the speedup in terms of to-
tal runtime. For the smaller threshold value of thirty-five
thousand, the speedup peaks at twelve nodes, however the
speedup for the fifty thousand threshold continues through
to sixteen nodes.

7.4.2 Modified Quicksort Summary

The results of the performance testing of the sorting ap-
plication in the previous section have shown that the Tu-
pleware system provides the application with significant
performance gains and speedup. The speedup is most pro-
nounced when a larger threshold is used. This is to be
expected as increasing the threshold increases the granu-
larity of the applications, increasing the ratio computation
to communications time.

These results are very pleasing, and demonstrate
that the system is able to provide speedup and perfor-
mance gains for medium-grained applications. Based on
Gustafson’s Law [8], with the average communication
time for each process remaining relatively constant as the
number of nodes increases, while the total workload be-
comes larger, we would expect the application to continue
to provide a high level of speedup as the number of nodes
increases past sixteen. This prediction is further strength-
ened when we consider that increasing the problem size
(via an increased threshold) actually greatly increases the
efficiency of the system.

7.5 Performance Evaluation Summary

This section has presented the performance results of two
applications: an ocean model and a parallel sorting appli-
cation.

The findings of this performance evaluation were
pleasing in terms of the sorting application, which dis-
played a high level of speedup on up to the maximum
number of sixteen nodes, and was effective in evenly dis-
tributing the processing workload amongst all participat-
ing nodes in the system. The performance of this ap-
plication also clearly illustrated the effect of varying the
granularity of each processing task, with the larger thresh-
old size exhibiting a higher degree of speedup than the
smaller threshold sizes. This was due to the time each
process spent on network communications remaining rel-
atively constant, while the processing performed per pro-
cess decreased as more nodes were added to the system.
This is a result typical of an application such as this, and
we can conclude that the Tupleware system has met its aim
in this case of providing a scalable platform upon which
to develop this style of medium-grained application.

In terms of the ocean model, the results show that the
overall speedup gain was limited, and that as the number
of nodes increased, the time each node spent performing
network communication placed limiting factor to the con-
tinued scalability of the application. However, we also
found that in increase in problem size, in this case the size
of the grid, did not place a disproportionate load on any
processes, and so there remains scope for the grid size
to be increased further on a cluster with nodes with more
than 1GB of memory.

8 Conclusions & Further Work

This paper has presented a dynamic, decentralised search
function for the retrieval of tuples in a distributed system
which contains multiple or a distributed tuple space. The
search function optimises its behaviour based on the his-
torical success or failure of previous tuple requests, which
allows an accurate representation of the relative probabil-
ity of remote nodes being able to fulfil a particular request
to be formed by each individual node.

A further benefit is that the search function’s logic is
decentralised, without any need for sharing request data
or global state information between nodes. If this was re-
quired, it would further add to the communication require-
ments of the system, and in turn lower the efficiency and
performance of the applications.

Performance testing was carried out in order to de-
termine the effectiveness of the search function, and the
results presented in the previous section show that the
system can provide performance gains for certain classes
of distributed parallel applications, and that it can scale
in terms of the number of nodes and also in terms of
the problem size. While the performance of the tightly-
coupled ocean model is not optimal, this is a common
problem with tuple space-based systems, and the per-
formance of Tupleware in this instance is comparatively
good. It should be noted that the distribution of the tu-
ple space in Tupleware in itself will introduce a certain
amount of overhead, and yet this does not seem to cause
the performance of applications running on Tupleware to
suffer noticeably.

Further work on the system will entail implementing
some sort of mechanism by which to measure the accu-
racy of tuple requests, so that we may compare the ef-
fectiveness of the search function being presented here to
other alternatives.

Also some additional work is planned to address dy-
namic reconfiguration of the system at runtime. At the
moment the number of participating nodes in the system
must be known at compile-time in order to partition of ar-
ray being processes and initialise the application. One of
the strengths of the tuple space paradigm is its flexibil-
ity, and so it would be desirable to implement additional
functionality to allow nodes to join and leave the system
without interrupting to completion of the application be-
ing executed.

References

[1] Amdahl, G 1967, ’Validity of the Single Processor
Approach to Achieving Large-Scale Computing Ca-
pabilities’,AFIPS Conference Proceedings, (30), pp.
483-485.

[2] Atkinson, A. and Malhotra, V 2004, ’Coalescing idle
workstations as a multiprocessor system using Javas-
paces and Java Web Start’,In: Eighth IASTED Intl.
Conference on Internet and Multimedia Systems and
Applications, August 16-18, 2004, Kauai, Hawaii,
USA.

[3] Atkinson, A 2008, ’A Distributed Tuple Space for
Cluster Computing’,Proceedings of the Ninth In-

CRPIT Volume 107 - Parallel and Distributed Computing 2010

28

ternational Conference on Parallel and Distributed
Computing and Techniques, Dunedin, New Zealand,
pp. 121-126.

[4] Carriero, N & Gelernter, D 1990,How to Write Par-
allel Programs, MIT Press, London.

[5] Charles, A et al. 2004, ‘On the implementation of
SwarmLinda’.In ACM-SE 42: Proceedings of the
42nd annual Southeast regional conference, pp. 297-
298, New York, NY, USA.

[6] Cormen, T. et al. 1999,Introduction to Algorithms,
MIT Press, Cambridge, Massachusetts.

[7] Gelernter, D 1985, ’Generative Communication in
Linda’, ACM Transactions on Programming Lan-
guages and Systems, vol. 7, no. 1, pp. 80-112.

[8] Gustafson, J 1988, ‘Reevaluating Amdahl’s law’.
Communications of the ACM,vol 31, no 5, pp. 532-
533.

[9] Hoare, CAR 1961, ’Algorithm 64: Quicksort’,Com-
munications of the ACM, vol 4, no 7.

[10] JavaSpacesTMService Specification, 2003, Sun Mi-
crosystems, California.

[11] Menezes, R and Tolksdorf, R 2003, ’A new approach
to scalable Linda-systems based on swarms’,Pro-
ceedings of the 18th Symposium on Applied Com-
puting (SAC’03), Melbourne, Florida, USA.

[12] Merrick, I. and A. Wood 2000, ’Coordination with
scopes’,In SAC ’00: Proceedings of the 2000 ACM
symposium on Applied computing, New York, NY,
USA, pp. 210-217.

[13] Merrick, I 2003, ’Scope-based coordination for open
systems’, PhD thesis, University of York.

[14] Nielsen B & Slrensen T, 1994, ’Distributed Program-
ming with Multiple Tuple Space Linda’, Masters
Thesis, Aalborg University, Denmark.

[15] Noble, M. S. and Zlateva, S. 2001,Scientific Compu-
tation with Javaspaces. Lecture Notes in Computer
Science 2110, 657-667

[16] Rowstron, Antony I. T., and Alan Wood. 1996. ’An
Efficient Distributed Tuple Space Implementation
for Networks of Workstations’.In Proceedings of the
Second International Euro-Par Conference on Paral-
lel Processing - Volume 1, pp. 510-513.

[17] Rowstron, A 1998, WCL: A Coordination Language
to Geographically Distributed Agents, World Wide
Web Journal, Volume 1, Issue 3, pp. 167-179.

[18] Wells, GC et al. 2004, ‘Linda implementations in
Java for concurrent systems: Research Articles’,
Concurrent Computing: Practice and Experience,
vol 16, no 10, pp. 1005-1022.

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

29

CRPIT Volume 107 - Parallel and Distributed Computing 2010

30

A Distributed Heuristic Solution using Arbitration for the
MMMKP

Md. Mostofa Akbar1, Eric. G. Manning3, Gholamali C. Shoja2, Steven Shelford4
Tareque Hossain5

1
Department of CSE, BUET, Dhaka, Bangladesh

mostofa@cse.buet.ac.bd
2
Department of CS, PANDA Group, UVic, Victoria, BC, Canada

gshoja@csc.uvic.ca
3
Department of CS and ECE, PANDA Group, UVic, Victoria, BC, Canada

emanning@csr.uvic.ca
4
Department of CS, UVic, Victoria, BC, Canada

sshelfor@uvic.ca
5
Commlink Info Tech Ltd., R&D Group, Dhaka, Bangladesh

tareque@commlinkinfotech.com

Abstract

The Multiple-Choice Multi-Dimension Multi Knapsack
Problem (MMMKP) is the distributed version of
Multiple-Choice Multi-Dimension Knapsack Problem
(MMKP), a variant of the 0-1 classic Knapsack Problem.
Algorithms for finding the exact solution of MMKP as
well as MMMKP are not suitable for application in real
time decision-making applications. This paper presents a
new heuristic algorithm, Arbitrated Heuristic (A-HEU)
for solving MMMKP. A-HEU finds the solution with a
few messages at the cost of reduced optimality than that
of I-HEU, which is a centralized algorithm. We also
discuss practical uses of MMMKP such as distributed
Video on Demand service.
.
Keywords: Heuristic, Knapsack, Distributed.

1 Introduction
The classical 0-1 Knapsack Problem (KP) is to pick up
items for a knapsack for maximum total value, so that the
total resource required does not exceed the resource
constraint R of the knapsack. The 0-1 classical KP and its
variants are used in many resource management
applications such as cargo loading, industrial production,
menu planning and resource allocation in multimedia
servers. Let there be n items with values v1,v2,…,vn and
let the corresponding resources required to pick the items
be r1,r2,…,rn respectively. The items can represent
services and their associated values can be values of
revenue earned from that service. In mathematical
notation, the 0-1 Knapsack Problem is to find V =

maximize , subject to the constraint

and .

i

n

i
i vx∑

=1
Rrx

n

i
i ≤∑

=1

∈ix

il

i

}1,0{
The Multidimensional Multiple-choice Knapsack
Problem (MMKP) is a variant of the classical 0-1 KP
[5][6]. Let there be n groups of items. Group i has

items. Each item of the group has a particular value and

m

m

it requires resources. The objective of the MMKP is to
pick exactly one item from each group for maximum total
value of the collected items, subject to resource
constraints of the knapsack. A resource constraint is the
availability of a particular type of resource to pick items
for a particular knapsack.
We define a new problem, the Multiple-Choice Multi-
Dimension Multi Knapsack Problem (MMMKP) as a
distributed version of the MMKP, where the resources are
distributed among knapsacks. There is a solver associated
with each knapsack for picking the items from the group.
So, distributed computing techniques will be required for
picking items. The following diagram shows an example
of the MMMKP.

v =10
r121=5, r122=7

v =14
r131=4, r132=7

v =9
r111=5,r112=5

v =11
r311=0, r312=4

Available
Resource
Type r1: 5

Item 3
Available
resource
Type r2: 10

Solver 1 Solver 2

v =13
r321=0, r322=8

Item 2

Item 1

v =0
r101=0,r102=0

v =0
r301=0, r302=0

Item 0

Knapsack 1 Knapsack 2
Group 1 Group 3

Figure 1 An MMMKP with 2 knapsacks and one
resource in each knapsack

To define the MMMKP mathematically we need the
following assumptions about the problem.

• There are M knapsacks. M solvers (one for each
knapsack) pick items from the groups.

• The dimension of resources in Knapsack s is ms and
it provides resources labelled as μs to μs + ms - 1
inclusive. The total set of resources of the sth
knapsack is defined by
()11 ,,, −++ ssss mRRR μμμ LLLL .

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

31

• Each solver is associated with exactly one knapsack.
Only Solver s knows the entire state of Knapsack s
and Solver s is solely responsible for allocating the
resources of Knapsack s. The state information of a
knapsack, such as resources used or available, is
completely private to that knapsack and its solver,
unless explicitly communicated to another solver by
messaging.

• There are n groups of items. The ith group has li
items. The jth item of the ith group requires rijk of the
kth resource. Each solver knows which resource is
served by which knapsack. The value of the jth item
of the ith group is vij. n groups are distributed among
M solvers. The number of groups in Solvers 1, 2,
...,..., M are n1, n2, ...,ns, ..., nM respectively. The
resource consumptions and associated values of the
items of the ns local groups of Solver s will not be
advertised fully to all the solvers. The partial
resource consumption of an item for a knapsack is
defined by the resource requirement of the item from
that knapsack. Thus, partial resource consumption of
the jth item of the ith group for the resources of
Knapsack s is expressed by the vector

() ()()11 ,,, −++ ssss mijijij rrr μμμ L . The partial resource
consumption of each item for any knapsack is sent to
its associated solver. The set of M solvers will jointly
execute a suitable distributed algorithm to pick
exactly one item from each group, so that the total
value of the picked items for the entire set of solvers
is maximized subject to the resource constraints of
each knapsack.

In mathematical notation, the MMMKP can be described
as follows.

Maximize = , total earned value from the

picked items of the groups of all servers such that the

resource constraints and

are satisfied.

V ∑∑
= =i j

ijijvx
1 1

∑∑
= =

n

i

l

j

i

1 1

n li

il

}1,0{∈ijx
i

∑∑
= =

2

1 1i

l

j
ijij

i

vx

=1 ,5

∑∑
= =

2

1 1i

l

j
ij rx

i

≤ kijkij Rrx , ∑
=

=
j

ijx
1

1

The subscripts are defined as follows:

• k = μ1, μ1+1,…, μ1+m1-1,… , μs, μs +1,…, μs + ms -
1,……., μM, μM+1,…, μM+mM-1

• , the picking variables
• =1, 2… n; j = 1, 2… li.

For our example in Figure 1 we can express the problem
as follows:

Maximize V = , subject to the resource

constraints and

∑∑
= =

≤
1

1

l

j
ijij Rrx

i

=2 10R

2

1i

≤2ij

1.1 MMMKP for Solving Multimedia
Distribution Problems

MMMKP can be easily applied to revenue maximization
problems where we find multiple admission controllers
for multimedia session requests under a particular
multimedia service provider organization. With
MMMKP, the admission controllers may work together
sharing multimedia session requests and determine the
optimal serving strategy for maximum revenue. The
following example demonstrates a viable application of
MMMKP in Distributed Multimedia Server System.

Available
Resource
IO: R11
Memory:R12
CPU: R13

m1 m2

Available
Resource
IO: R21
Memory:R22
CPU: R23

m2 m3

m3 m5 Server1 Server2

Request1 Request2 Request3 Request4

Movies Served Movies Served

11 12r 13r 21r 22r 23r

Figure 2 VoD servers serving requests

Consider two “Video-on-Demand” servers each serving
two different collections or sets of movies as shown in
Figure 2. A subscriber upon authentication may request
for a multimedia session to any of the servers. If the
movie does not reside in the server attempting to process
it or if the server runs out of resources, the server may
forward the session request to the other server.
A multimedia session between the server and the
subscriber will require allocation of a number of
resources on part of the server. These resources may
include but are not limited to: Processing power, physical
memory and IO capacity. It is allocation of these
resources that determine a session’s quality of service.
For sake of simplicity we consider only one level of QoS
for each of the servers. Real life situations can be more
complex with multiple QoS levels, separating subscribers
who pay more for high quality audio-visual feed from
those who settle for lesser quality. It is worth mentioning
that a server has the full authority to allocate and utilize
its resource only, which is one of the basic principles of
distributed systems. Hence the problem can be defined as
that of distributing multimedia session requests between
the two servers so that maximum number of requests can
be handled under the given resource constraints, thereby
maximizing revenue.

From Figure 2 we find that there are 6 resource
dimensions as expressed by (r , , , ,).
The first three indicates the resources of Server1 and the
remaining three indicates the resources of Server2. Figure

CRPIT Volume 107 - Parallel and Distributed Computing 2010

32

3 shows an example of different choices of serving the
requests in further details.

Two solvers are considered representing two servers
entertaining requests from the customers.
demands service of movie . As we can see, both of the
servers have the movie. Hence it is possible to serve the
request in two different ways, namely Choice1, when
served by & Choice2, when served by . A
generic representation for Choice1 would be (, , ,

, ,) and (0 , , 0 , ,) for Choice2.
Similarly is for movie which both
and offer. Hence we have two choices to have the
request satisfied. On the other hand movie resides only
on and only on leaving us with a
single choice for servicing requests concerning each of
these movies.

1Request

2Server

12r 13r

1Server

2m

r

1Server

3Request

2

1 5m

11r
0 0

Server

0

Server

0 21 22r

3m

2Server

23r

1m

Available
Resource
Type R11: 14
Type R12: 20
Type R13: 19

Request1(m2)

Server1

Solver 1

Solver 2

Item 0/
Choice 0

Item 1/
Choice 1

Request2(m5)

Request3(m3) Request4(m1)

v = 16
r11=r12= r13=0

r21=17, r22=3, r23=5

Server2

v = 8
r11=r12= r13=0

r21=9, r22=12, r23=7

v = 15
r11=r12= r13=0

r21=5, r22=12, r23=9

v = 21
r11=r12= r13=0

r21=14, r22=8, r23=4

v = 14
r11=7, r12=8, r13=11

r21=r22= r23=0

v = 18
r11=13, r12=5, r13=9

r21=r22= r23=0

Available
Resource
Type R21: 17
Type R22: 13
Type R23: 9

Group 1 Group 2

Group 3 Group 4

Figure 3 Multimedia distribution system mapped to
MMMKP

The goal of MMMKP in such a Distributed Multimedia
Server System is to pick exactly one item or QoS from
each of the Group representing each request. When
working independently, these servers may not choose the
combination that is optimal for both of the servers, as
already pointed out in the introduction section. MMMKP
allows these two servers to share their decisions of
resource allocation by passing messages and determines
the solution that will yield maximum overall revenue.

2 Related Work on Solving Knapsack
Problems

Many practical problems in resource management similar
to the one discussed above can be mapped to the MMKP,
consequentially their distributed version to MMMKP. But
proposed exact solutions for MMKP are so
computationally expensive [3][4][8] that they are not
feasible for real time applications. In such cases heuristic
or approximate algorithms for solving the MMKP and
MMMKP play an important role.

Over the years, many heuristics have been proposed with
a view to provide real time solution for MMKP. One of
the earliest heuristics was HEU, proposed by Khan [7].
Khan has applied the concept of aggregate resource
consumption [9] to pick a new candidate item in a group
to solve the MMKP. Aggregate resource of the jth item of

the ith group is defined by CCra k
k

ijkij ×=∑ , where

Ck= amount of the kth resource consumption and

∑= 2
kCC

() k
k

ijkkiiij Crra ×−=Δ ∑][ρ

ijiiij vvv

. His heuristic HEU selects the lowest-
valued items by utility or revenue of each group as an
initial solution. It then upgrades the solution by choosing
a new candidate item from a group, which has the highest
positive Δaij, the change in aggregate consumed resource
(the item which gives the best revenue with the least
aggregate resource). If no such item is found then an item
with the highest (Δvij)/(Δaij) (maximum value gain per
unit aggregate resource expended) is chosen. Here,

, the increase in aggregate

consumed resource.

 rijk= amount of the kth resource consumption of the jth
item of the ith group.

ρ[i]=index of selected item from the ith group and
−][ρ , is the gain in total value. Δ =

Consequently, Akbar et al. [1] proposed another heuristic
using the concept of aggregate resource called M-HEU, a
modified version of Khan’s HEU. In M-HEU the items in
each group of the MMKP are sorted in non-decreasing
order according to the value associated with each item.
Hence, it can be said that in each group the bottom items
are lower-valued items than the top ones. The items at the
top can be defined as higher-valued items than those in
the bottom. Picking a higher-valued or lower-valued item
than the currently selected item in a group is called an
upgrade or a downgrade respectively. The heuristic
focuses on finding an upgrade or downgrade frequently.
That is why the items of each group need to be sorted
according to the associated values of the items. If a
particular pick of items (one from each group) does not
satisfy the resource constraints, that solution is defined as
infeasible. A feasible solution is a solution that satisfies
the resource constraints. For any resource k, infeasibility
factor fk is defined as kk R

1
C . The kth resource is feasible

if the infeasibility factor ≤kf , otherwise it is infeasible.

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

33

If the number of groups in the MMKP is very large then it
is not possible to run M-HEU once every few seconds, as
a real time system, (for example a multimedia system
with 10,000 sessions) might well require. An incremental
solution is a necessity to achieve better computation
speed. By changing the technique of finding feasible
solution M-HEU can be used to solve the MMKP
incrementally, starting from an already solved MMKP.
Akbar et al. named this heuristic I-HEU [1]. The
proposed arbitrated heuristic A-HEU applies I-HEU in
the solvers to select the probable candidate of the selected
items. The steps of I-HEU are briefly described as
follows:

Finding Feasible Solution (Step 1): In I-HEU a feasible
solution is searched by selecting a lower valued item at
first. If no feasible solution is found by searching lower
valued item then higher valued items are looked up, like
M-HEU. In this way most of the solution at hand can be
re-used to obtain the new solution with less effort.

Upgrading Feasible Solution (Step 2): This is done by
iimproving the solution value by selecting a feasible
higher-valued item from the groups subject to resource
constraints, i.e., by feasible upgrades.

Upgrade followed by Downgrades (Step 3): In this step
the solution value is improved by one infeasible upgrade
followed by one or more downgrades. This is analogous
to get rid of local minima in the hill climbing algorithm.

Shahriar [11] presented a scalable solution to run MMKP
heuristic using a multiple processor based computing
server by distributing the computation among the
processing nodes. But the presented algorithm is not
intended for running the new problem that we have
presented in this article.

In the following section, we present A-HEU, a new
arbitrated heuristic, to determine the solution of the
MMMKP by arbitrating among the solvers with a lower
number of messages. But the total value of the items
picked by A-HEU is often less than that of the centralized
version.

3 Arbitrated Heuristic (A-HEU) for Solving
the MMMKP

This method of solving MMMKP requires a few
messages with several rounds of arbitrations; its message
passing complexity is O(M). The solver in each knapsack
runs I-HEU independently. The candidate for upgrades
and downgrades are calculated based on the value of
PCAR (Partial Change of Aggregate Resource) defined as
follows:

() k

m

k
ijkkiiijs Crrpa

ss

s

×−=Δ ∑
−+

=

1

][

μ

μ
ρ

Hence, as a simplifying assumption, the resources in
other knapsacks are completely ignored in this
calculation. To find a feasible solution we first run Step 1

of I-HEU in each solver. If each solver finds a feasible
solution and each solver satisfies the resource constraint
of all the selected items from each group, then we find a
feasible solution. Now, to find upgrades and downgrades,
each solver sends its proposed list of selected items,
calculated by running Step 2 and 3 of I-HEU, to the other
solvers. The proposed list is sorted according to change of
value per PCAR. It is worth mentioning that to find the
globally selected items according to the values of PCAR
the list must be sent along with the associated values of
PCAR. The items in this sorted list, which satisfy the
resource constraints of all the knapsacks, can be selected.
Thus arbitration among the solvers is required to select
items from the groups.

The same procedure can then be repeated until we run out
of real time, to attempt to obtain better total values. Here
we present an arbitration technique to select the items
which requires only O(M) message complexity. The
following example shows only one arbitration step of A-
HEU.

If we run I-HEU in both the solvers of Figure 4
independently, the solution can be shown in Table 1. As
the lowest valued items are all zero, we need not find a
feasible solution. Picking the jth item of the ith group can
be expressed by ()ji, . The proposed lists by Solvers 1
and 2 are ({) })2,2(,3,1 (){ })3,4(,2,3 and respectively.
These lists are exchanged between the solvers. The sorted
global list after merging these proposed lists is
({) () })2,2(),2,3(,3,4,3,1 . Now the feasible picks by Solver

1 are () (){ })2,3(,3,4,3,1 ∑ = 141r

() ()}3,4,3,1

 with . Similarly the

feasible picks by Solver 2 are { with

∑ = 152r

()

. So Solver 1 and 2 can satisfy the first 3 and
2 picks respectively from the proposed sorted list of
selected items. They exchange this information and take
the set intersection of their possible solutions; namely,
they pick the first 2 items from the proposed list. Hence
the solution after the first arbitration is ()3,4,3,1{ } with

∑ = 141r , ∑ = 152r 31=and V .

CRPIT Volume 107 - Parallel and Distributed Computing 2010

34

v =10
r121=5, r122=7

v =14
r131=4, r132=7

v =9
r111=5,r112=5

v =11
r311=0, r312=4

v =12
r421=7, r422=7

v =7
r411=5, r412=3

v =17
r431=10, r432=8

Knapsack 2

Group 1

Group 3 Group 4

v =13
r321=0, r322=8

v =11
r211=12, r212=0

v =12
r221=13, r222=0

Group 2
Knapsack 1

Solver 1

Solver 2

v =0
r101=0,r102=0

v =0
r401=0, r402=0

v =0
r301=0, r302=0

v =0
r201=0, r202=0

Total
Resource
Type r1: 23

Consumed
Resource
C1: 0

Total
Resource
Type r2: 16

Consumed
Resource
C2: 0

Figure 4 An MMMKP with two knapsacks.

Groups Picke

d
Items

Change of
value per
PCAR

Resource
consumption

Group 1 3 3.5 Resource
consumption in
Solver 1: ∑ = 171r

Group 2 2 0.923

Group 3 2 1.625 Resource
consumption in
Solver 2:

 ∑ = 162r

Group 4 3 2.125

Table 1 Items picked by Solver 1 and 2 by running I-
HEU independently

3.1 Format of the Messages
The messages required to run A-HEU are listed and
briefly described as follows.

Message
Type

Description of the structure Monitor
counter
associated with
the message

Groups This is a list of groups. Each

group is defined by (solver

number, group number,

number of items, partial

resource requirements for the

items)

no_of_groups_m
sgs

Message
Type

Description of the structure Monitor
counter
associated with
the message

Local Total
Value

The vector (solver number,
total value) indicates the total
value of the items picked by a
solver.

no_of_local_tota

l_value

_msgs

Proposed
Selected
Item List

The following vector is used to
define a proposed selected item

(solver number, group number,
item number, value per PCAR)

no_of_local_pro
posed_list_msgs

Local
Feasibility
Index

The vector (s, L) indicates that
the first L items from the
beginning of the global
proposed selected item list are
feasible with respect to the
resources in Solver s.

no_of_local_feas
ibilty_msgs

Solution
Not Found

This message indicates that a
solver could not find any
solution while determining
proposed selected items for
feasible solution.

Not applicable
because the
solver terminates
if this message is
received.

Table 2 Different Types of Messages used in A-HEU.

3.2 Sequence of Events in A-HEU

Waiting for messages
from a solver

Saving PCARs

no_of_local_proposed_
list_msgs<no_of_solver

Notify the
sender thread

Saving proposed selected
items of other solvers

Saving local
feasibility index

no_of_local_feasibility
_index < no_of_solvers

.......................

......
................
.............

proposed selected items Local infeasibility index

Yes

No

Yes

No Notify the
sender thread

Receiver Thread
Figure 5 Flow chart of distributed computation by A-

HEU (Receiver Thread)

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

35

Figure 5 and 6 shows the flow chart of the processes and
events in A-HEU during each arbitration. We allocate
separate variables for each solver’s list of proposed
selected items and local feasibility index. Thus, the
actions ‘saving proposed selected items’ and ‘saving local
feasibility index’ executed by the receiver threads need
not to be atomic or synchronized. The decision blocks in
the flow chart check counters shared by all threads, so,
these decision blocks must be synchronized.

Determining the proposed
selected items and sending it to
the other solvers

no_of_local_proposed_
list_msgs<no_of_solvers

Waiting for notification of all
proposed item lists received

Sorting proposed selected items
Determining local feasibility index
and sending it to other solvers

Yes

no_of_local_feasibility_index
< no_of_solvers

No

Determining the global feasibility
index and updating the selected
items.

Yes No

Waiting for notification of all
local feasibility index received

Sender Thread

Figure 6 Flow chart of distributed computation by A-
HEU (Sender Thread)

3.3 Complexity of A-HEU
Here we present the computational and message passing
complexity by one arbitration of A-HEU as the first
arbitration yields near optimal total value while the
following iterations improve the solution with increased
total values.

Computational complexity to run I-HEU on an MMKP
with Mn groups and Mm resources is

2
2

)1(3
−⎟

⎠
⎞

⎜
⎝
⎛ l

M
n

M
m in Step 2 and 2

2

)1(17
−⎟

⎠
⎞

⎜
⎝
⎛ − l

M
n

M
m to

escape from local minima in Step 3.

We require the following messages and computations in
each arbitration to find the candidate items for upgrading
or downgrading:

()12 M − messages to send local proposed list of selected
items.

()
2

1−nn floating point operations to sort the locally

proposed lists to determine the global proposed list.

⎟
⎠
⎞

⎜
⎝
⎛ + M

M
nm2 comparisons to find the local and global

feasibility index. Thus computation and message passing

complexities in each solver are ⎟
⎠

⎞
⎜
⎝

⎛ −
3

22)1(
M
mlnO and

()MO

5,21

 respectively.

4 Experimental Results
In order to study the run-time performance of A-HEU to
solve the MMMKP we implemented A-HEU along with
I-HEU using Java. For simplicity of the implementation,
we assume:

• Each group has the same number of items i.e.,
= = = =nlll LL

4,21 ==

• Each knapsack has the same number of resources i.e.,
= = = mmmm MLL

cM nnnn

.

• Each solver has the same number of groups i.e.,
= = = =LL,21 .

The algorithms were tested for an MMMKP with 3
knapsacks. Three different machines were used as three
different solvers and a fourth machine was used as a
generator of the MMMKP. The generator generates the
groups of the MMMKP and sends them to the solvers.
The generator machine also runs I-HEU on the
transformed MMKP from the generated MMMKP.

4.1 Test Pattern Generation
The total amount of resources in the knapsacks, resource
consumption by the items, and the values associated with
the items are initialized as follows.
Rc = Maximum amount of a resource consumption by an
item
Pc = Maximum cost per unit resource
Ri = Total amount of the ith resource = nc×M×Rc.
Pk = Cost of the kth resource = Pc × Random (0.0, 1.0)
Random (0.0, 1.0) = A uniform continuous random
number from 0.0 to 1.0.
Item 0 with zero value and zero resource consumption,
i.e., ri0k = 0.0 and vi0 = 0.0 is inserted for each group of
the data set. Selection of this item indicates rejection of
the group which is similar to the rejection of request in

CRPIT Volume 107 - Parallel and Distributed Computing 2010

36

the admission controller. The other items of the groups
are initialized by the following random functions:
rijk = The kth resource of the jth item of the ith group = Rc
× Random (0.0, 1.0)
For initializing item values we use the following
functions:
vij = Value of the jth item of the ith group

=∑ ⎟
⎠

⎞
⎜
⎝

⎛
××××+×

1010
)0.1,0.0(cc

kijk
PR

MmRandomPr

4.2 Test Results
The experiment was conducted for different values of nc,
from 100 up to 1000. The following data was collected
from the experiments and is presented in Figure 7 to
Figure 9.

• Total values of the picked items and time required by
I-HEU

• Number of messages required by A-HEU

• Required time, total value of the picked items and
number of messages by one, two and three
arbitrations of A-HEU

In the experiment we have compared A-HEU with the
centralized version I-HEU. There is no algorithm prosed
so far in the literature to solve the MMMKP. That is why
we present the effectiveness of A-HEU with respect to I-
HEU by analyzing experimental results.

Machine
name

CPU speed RAM O/S JDK
Versio
ns

Solver 1 750 MHz 256 MB Windows
2000

JDK
1.2.2

Solver 2 700 MHz 192 MB Windows
2000

JDK
1.3.1_0
3

Solver 3 750 MHz 256 MB Windows
2000

JDK
1.2.2

Generator 700 MHz 192 MB Windows
2000

JDK
1.3.1_0
3

Table 3 Specifications of the solvers and generator of
the MMMKP using IBM PC compatible.

4.3 Observations

• The total value of the items picked by A-HEU is
approximately 90% of the total value of the items
picked by D-HEU, but A-HEU requires a less time
compared to D-HEU.

• Figure 9 shows the effect of message passing time in
the overall complexity of the algorithm. For smaller
data sets computational time is less compared to
message passing. For larger data sets quadratic
computation complexity of the algorithms dominates
over linear message complexity. That is why better
performance is observed for the larger data sets.

• We can easily conclude that A-HEU scales better
than centralized I-HEU. We observe significant
reduction in time requirement using A-HEU as
reported by the time requirement data plotted in the
exponential scale of the vertical axis.

• An irregular behaviour for the result of the set with
700 groups is observed in the figures showing the
experimental results. Our complexity analysis
presenting in this article is based on the worst case
scenario. The actual computational time mostly
depends on the data sets. A particular data set may
lead to quick or late convergence to find the solution
of the MMMKP showing exceptional behaviour in
the result.

• For almost all the MMMKP data sets the total value
of the items picked by first arbitration of A-HEU is
more than 95% of the total value of the items finally
picked by A-HEU.

Number of
groups in
each
solver

HEUI

HEUA

V
V

−

−
1

100×
HEUI

HEUA

V
V

−

−
2

100

× 100

3

×
−

−

HEUI

HEUA

V
V

100×
−

−

HEUI

HEUA

V
V

100 92.63 93.07 93.07 93.07
200 90.71 91.15 91.15 91.15
300 92.27 92.56 92.56 92.56
400 91.43 91.52 91.52 91.52
500 91.35 91.35 91.35 91.35
600 92.43 92.43 92.43 92.43
700 74.40 87.80 87.91 88.12
800 92.05 92.05 92.05 92.05
900 91.64 91.71 91.71 91.71

1000 92.57 92.77 92.80 92.80
Table 4 Ratio of total value of the items picked by A-
HEU with respect to I-HEU. V indicates the
total value of the items picked by the ith arbitration of
A-HEU. V and V indicates the total value
of the items picked by A-HEU and I-HEU.

i
HEUA−

HEUA− HEUI −

0

100000

200000

300000

400000

500000

600000

700000

800000

100 200 300 400 500 600 700 800 900 1000

Number of groups in each solver

To
ta

l v
al

ue
 o

f t
he

 it
em

s p
ic

ke
d

by
di

ffe
re

nt
 h

eu
ris

tic
s

A-HEU A-HEU (1st Arbitration) A-HEU (2nd Arbitration)
A-HEU (3rd Arbitration) I-HEU

Figure 7 Total value of the items picked by A-HEU, D-
HEU and I-HEU

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

37

1

10

100

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Number of groups in each solver

N
um

be
r o

f m
es

sa
ge

s
re

qu
ire

d

A-HEU (1st arbitration)
A-HEU (2nd Arbitration)
A-HEU (3rd Arbitration)
A-HEU

Figure 8 Number of messages required by distributed

algorithms to solve the MMMKP.

1

10

100

1000

10000

100 200 300 400 500 600 700 800 900 1000

Number of groups in each solver

Ti
m

e
re

qu
ire

d
in

 m
s

100000

A-HEU (1st Arbitration) A-HEU (2nd Arbitration)
A-HEU (3rd Arbitration) A-HEU
I-HEU

Figure 9 Time required by different algorithms to
solve the MMMKP and MMKP

4.4 Discussion of the Performance of A-HEU

• An arbitration in A-HEU requires a few messages
compared to any other regular distributed computing
algorithms. So an iteration of A-HEU can be easily
applicable for on line admission control algorithms.
The admission control algorithm can execute further
arbitration for better values if it has a more relaxed
time constraint. Thus this algorithm is very suitable
for an online system that requires quick decisions
with a sub optimal total value, with the possibility of
using more available time to improve the quality of
the computation.

• The main reason for sub optimality in A-HEU lies in
not considering all resource requirements in the
preliminary selection.

• The arbitration technique for finding global
feasibility index is another reason for sub optimality.
We give up upgrading from the proposed list of
selected items if we get one infeasible upgrade in the
list. The very next item might be feasible. A new
arbitration technique with O(nM) message
complexity might do that. However, if we do the
arbitration again, with a newly calculated proposed
selected item list for better total value, the competent
items will get a chance to be selected. That is why
we prefer multiple iterations of the arbitration, to a
new arbitration technique with O(nM) message
complexity.

• If the items of the groups consume all the resources
of all knapsacks uniformly then A-HEU is unlikely
to get better total value in the next arbitration,
because a particular resource has already been
exhausted in the previous arbitration.

In practical cases, such as multimedia servers and
Enterprise Networks, a QoS level of a session requires
resources of a particular server or a particular network
link. So there is a chance to allocate available resources
to other selected items of the groups in the next
arbitration.

5 Conclusion
In this article we have presented a new variant of
knapsack problems which requires distributed algorithm
to solve the problem. Our proposed new algorithm A-
HEU achieves almost 90% optimality of I-HEU in

()3
1

MO
of the computation time required by I-HEU and

O(M) message passing where M is the number of solvers
in the system. The experimental results show that the
message passing time can be ignored for a larger problem
set. Thus the new algorithm presents a scalable with the
scope of distributed control. This particular problem is
very much applicable for different resource sharing
system in the distributed real time systems. This
algorithm is a potential candidate for admission
controlling in distributed real time systems.

6 References

[1] Akbar, M., Manning, E. G., Shoja, G. C. and Khan, S.

(2001): Heuristic solutions for the multiple-choice
multi-dimension knapsack problem. Proceedings of
the International Conference on Computational
Science 659–668, San Francisco, Calif, USA, May
2001.

[2] Akbar, M., Manning, E. G., Shoja, G. C. (2001):
Admission Control and QoS adaptation in
Distributed Multimedia Server System. ITCom 2001
Denver, USA, August 2001.

[3] Armstrong, R., Kung, D., Sinha, P. and Zoltners, A.
(1983): A Computational Study of Multiple Choice

CRPIT Volume 107 - Parallel and Distributed Computing 2010

38

Knapsack Algorithm. ACM Transaction on
Mathematical Software 9:184-198.

[4] Koleser, P. (1967): A Branch and Bound Algorithm
for Knapsack Problem. Management Science 13:723-
735.

[5] Nauss, R. (1978): The 0-1 Knapsack Problem with
Multiple Choice Constraints. European Journal of
Operation Research 2:125-131.

[6] Magazine, M. and Oguz, O. (1984): A Heuristic
Algorithm for Multidimensional Zero-One Knapsack
Problem. European Journal of Operational Research
16(3):319-326.

[7] Khan, S., Li, K. F. and Manning, E.G. (1997): The
Utility Model for Adaptive Multimedia System.
International Workshop on Multimedia Modeling
111-126.

[8] Shih, W. (1979): A Branch and Bound Method for
Multiconstraint Knapsack Problem. Journal of the
Operational Research Society 30:369-378.

[9] Toyoda, Y. (1975): A Simplified Algorithm for
Obtaining Approximate Solution to Zero-one
Programming Problems. Management Science
21:1417-1427.

[10] Hifi, M and Michrafy, M. (2006): A reactive local
search-based algorithm for the disjunctively
constrained knapsack problem. Journal of the
Operational Research Society 57:718-726.

[11] Shahriar, M.A.Z, Akbar, M.M., Rahman, M.S. and
Newton, M.A.H. (2008): A multiprocessor based
heuristic for multi-dimensional multiple-choice
knapsack problem. The Journal of Supercomputing
43(3): 257-280.

[12] Hifi, M., Michrafy, M. and Sbihi, A. (2004):
Heuristic algorithms for the multiple-choice
multidimensional knapsack problem. Journal of the
Operational Research Society 55:1323–1332.

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

39

CRPIT Volume 107 - Parallel and Distributed Computing 2010

40

Object Oriented Parallelisation of Graph Algorithms using Parallel

Iterator

Lama Akeila1 , Oliver Sinnen2 and Wafaa Humadi3

The Department of Electrical and Computer Engineering
The University of Auckland, New Zealand.

1 lake003@aucklanduni.ac.nz, 2 o.sinnen@auckland.ac.nz, 3 whum003@aucklanduni.ac.nz

Abstract

Multi-core machines are becoming widely used which,
as a consequence, forces parallel computing to move
from research labs to being adopted everywhere. Due
to the fact that developing parallel code is a signi�-
cantly complex process, the main focus of today's re-
search is to design tools which facilitate the process of
parallelising code. The Parallel Iterator (PI) is a tool
which was developed to automate the process of par-
allelising loops in OO applications. Graph algorithms
can be represented using objects and hence they are
excellent use cases for the PI. This paper discusses
using the PI to parallelising graph algorithms such as
breadth-�rst search (BFS), depth-�rst search (DFS)
and minimum spanning tree (MST). Using the PI
to parallelise such graph algorithms required adding
some adaptations to the current concept of the PI
to handle certain graph algorithms. The PI facili-
tates the process of parallelising graph algorithms in a
way which keeps the parallel code readable and main-
tainable while exhibiting speedup. Java was used as
the implementation language since it is one of the
most commonly used object oriented languages. The
parallelised graph algorithms were tested on di�erent
graphs and trees with di�erent densities, granular-
ity and structures. The experimental results show
that the parallelised graph algorithms exhibit good
speedups.

Keywords: parallel computing, object oriented paral-
lelisation, Parallel Iterator, graph algorithms.

1 Introduction

With the introduction of multi-core processors, the
importance of parallel computing has accelerated into
the mainstream and hence, parallel computing tech-
nologies have been adopted everywhere (Reinders
2007). The expected performance speedup gained by
increasing the number of processors depends on the
problem to be solved and the algorithm which is used
(Rajasekaran & Reif 2007). This signi�es that the
software has to be designed in a way which takes ad-
vantage of the increased number of processors and
hence parallelising software applications becomes a
necessity. The process of parallelising software appli-
cations is not straight forward since the developers are
forced to deal with parallelisation details such as syn-
chronisation between processors, locking of shared re-
sources, race conditions and so on. As a consequence,

Copyright c©2010, Australian Computer Society, Inc. This pa-
per appeared at the 8th Australasian Symposium on Parallel
and Distributed Computing (AusPDC 2010), Brisbane, Aus-
tralia. Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 107, Jinjun Chen and Rajiv Ran-
jan, Ed. Reproduction for academic, not-for pro�t purposes
permitted provided this text is included.

the main focus of today's research is to develop tools
which facilitate the development of parallel applica-
tions. Most software applications rely heavily on iter-
ative computations (N.Giacaman & O.Sinnen 2008)
(i.e. computations handled by loops). In OO lan-
guages loops are handled by Iterator objects. As a
consequence, tools for parallelising loops have very
signi�cant advantages when developing parallel ap-
plications. An example of such a tool is the PI which
has been developed and implemented in the ECE de-
partment at the University of Auckland (N.Giacaman
& O.Sinnen 2008, Akeila 2008).

The Parallel Iterator provides a thread-safe mech-
anism to iterate through a collection of elements con-
currently by multiple threads and hence it eases the
process of loop parallelisation in many OO applica-
tions. A graph library is an example of an OO ap-
plication which plays an important role in various
�elds. Many applications rely on graph algorithms
to solve common problems in computer science, chem-
istry and business (Buckley & Lewinter 2003). Graph
libraries can be well implemented with objects. To
maintain high productivity, readability and maintain-
ability, the parallelisation should be done in an OO
way. As a consequence, an OO tool such as the PI is
powerful in terms of producing an OO parallel version
of graph algorithms with a readalbe and maintainable
code which exhibits speedup. Graphs are excellent
use cases for the PI. Given their special structures,
some graph algorithms might need adaptations and
improvements to the PI, which is investigated in this
paper. These adaptations are encapsulated by the PI
(i.e. all the parallelisation details and the new adap-
tations are implemented internally by the PI) which,
as a consequence, requires little or no code restructur-
ing when using the PI to parallelise graph algorithms.

Parallelising three main graph algorithms using
the PI is discussd in this paper: Breadth-First
Search (BFS), Depth-First Search (DFS) and Mini-
mum Spanning tree (MST). Section 2 introduces the
PI. An overview about graph theory is included in
section 3. Section 4 discusses the BFS and its par-
allelised versions while sections 5 and 6 discuss DFS
and MST respectively.

2 The Parallel Iterator

Object oriented programming is widely used by soft-
ware engineers. It allows software designers to de-
velop high quality software solutions that are reusable
and easy to implement and maintain (Craig 2001).
Most applications heavily rely on iterative computa-
tions which are normally encapsulated inside loops
(N.Giacaman & O.Sinnen 2008). As a consequence,
the main approach in parallelising OO applications
is parallelising loops. In object-oriented languages it-
erative computations such as loops are handled us-
ing iterators. Iterators are objects which allow the

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

41

developer to traverse collections of elements by call-
ing two main methods: 1) hasNext which returns a
boolean value indicating whether there is any remain-
ing element in the collection. 2) next which returns
the actual element. However, con�icts occur if mul-
tiple threads are accessing the collection of elements
concurrently when one element is remaining in the
collection and at least two threads call the hasNext
method simultaneously. Only one thread gets the
next element while the other throws an exception.
In addition to that, further parallelisation issues need
to be taken into account when traversing a collection
of elements concurrently such as load balancing and
supporting di�erent scheduling mechanism. Due to
the insu�ciency of using the normal iterator for par-
allel systems, the need for a mechanism to traverse
collections in a thread-safe and parallel appropriate
fashion became evident.

The PI concept has been developed and imple-
mented in the ECE department at the University of
Auckland. It allows for an e�cient parallel traver-
sal of a collection of elements without resulting in
any con�icts between the threads which are access-
ing the collection simultaneously (N.Giacaman &
O.Sinnen 2008). Iterations are distributed among the
threads according to the speci�ed scheduling policy.
Once the thread �nishes its allocated iterations, it ex-
its and waits for the other threads to complete their
iterations. Such synchronisation between threads is
warranted and the program follows sequential seman-
tics.

The PI has two main methods identical to the con-
ventional sequential iterator, hasNext and next. It
follows the typical semantics of an iterator in that
the hasNext method is always called before calling
the next method (i.e. it always checks whether there
are still elements remaining in the collection before
retrieval). The PI supports both random access col-
lections (i.e. elements can be accessed directly in a
constant time O(1)) and inherently sequential collec-
tions (i.e. elements' access time is proportional to
the number of elements in the collection O(n)). The
PI can be used with di�erent scheduling policies and
allows for specifying a chunksize as a method param-
eter. It supports three main scheduling polices as
shown below in Figure 1: static (block and cyclic),
dynamic and guided scheduling. Figure 1 shows the
three di�erent scheduling policies and how the ele-
ments are distributed among the threads in each pol-
icy with a collection of 9 elements when 3 threads
access it simultaneously.

Figure 1: The implemented scheduling policies

The PI simply subsitutes the sequential iterator.
Little or no code restructuring is required to be added
to the application which is being parallelised by the
PI. It also can handle breaks and exceptions and it
implements important features such as reductions.

3 Graph Theory

A graph can be de�ned as a mathematical represen-
tation of a relationship or set of relationships be-
tween elements (Buckley & Lewinter 2003). Any

graph G consists of a nonempty �nite list of ver-
tices V and a �nite set of edges E that relates the
vertices in V . Each edge in the set E consists
of two vertices that are related. For example, if
V = {v1, v2, v3, v4,, vn} is the total number of ver-
tices in G and E = {e1, e2, e3, e4,.....,en} is the list of
edges in the graph, each edge in E is of the form
{vi, vj} (Buckley & Lewinter 2003). Some graphs
have weights w(vi, vj) on each edge where w repre-
sents the cost of connecting the two vertices, vi and
vj together.

A path from vertex v1 to vertex v4 is the sequence
of vertices {v1, v2, v3, v4} which connects vertex v1 to
vertex v4. If the starting point vertex of the path is
the same as the end point vertex, this path is said
to produce a cycle and the graph is said to be cyclic
graph. If no such cycles occur in the graph it is called
acyclic. A graph is called connected if every pair of
vertices is connected by a path

Some of the most commonly used graph algorithms
are Breadth-First Search (BFS), Depth-First Search
(DFS) and Minimum Spanning Tree (MST).

4 Breadth-First search (BFS)

BFS is one of the simplest algorithms for searching
graphs and the idea is used by many other algo-
rithms such as Prim's minimum spanning tree algo-
rithm (Cormen, Leiserson, Rivest & Stein 2001). It is
also used in other applications in various �elds such
as image processing (Silvela & Portillo 2001, Cormen
et al. 2001). Given a graph G and a source vertex s,
the BFS algorithm explores all the vertices reachable
from the source vertex s in stages (i.e. the algorithm
discovers the vertices reachable from s at distance k
before discovering the vertices reachable from s at
distance (k + 1) (Cormen et al. 2001). A vertex in
level k indicates that the distance from that vertex
to the root is k (Buckley & Lewinter 2003). Figure 2
illustrates the di�erent BFS levels of an example tree.

Figure 2: Breadth-First Search Levels

The next section presents the sequential algorithm
of BFS and some previous work which was done to
parallelise BFS followed by the various approaches
which were taken to parallelise the graph algorithm
using the PI. The proposed parallel approaches work
for any graph. One of those parallel approaches uses
the PI directly by passing each level of the tree at a
time directly to the PI until no more levels exist. The
other parallel approaches are implemented as an ex-
tension to the PI concept where the parallel iterator's
hasNext and next methods return the nodes on the
�y to the calling processors in a breadth-�rst order.

4.1 Sequential BFS

The sequential implementation of the BFS relies on
processing each level of the tree at a time. It can
be implemented using one queue. The following al-
gorithm illustrates the concept where successors is

CRPIT Volume 107 - Parallel and Distributed Computing 2010

42

a queue which stores the nodes of the tree or graph.
Initially the successors queue contains the starting
vertex of the graph (i.e. the root in the tree case).

Algorithm 1 Sequential BFS.

1 : whi le (s u c c e s s o r s i s not empty){
2 : f o r (every node n in su c c e s s o r s){
3 : p roce s s n i f i t i s not proces sed
4 : add su c c e s s o r s o f n to su c c e s s o r queue end
5 : }
6 : }
7 : e x i t

As illustrated in Algorithm 1 , the algorithm exits
when the successors queue is empty (i.e. all nodes
have been processed). Processing the nodes level by
level ensures the breadth-�rst order. When BFS is
run on trees, node n which is retrieved in line 3 is
always processed since every node in a tree has one
parent. However in graphs, a node can have more
than one parent hence line 3 only processes the node
if it was not processed previously.

4.2 Previous Parallel BFS Approaches

Most existing parallel BFS algorithms rely on process-
ing nodes level by level (Yooy, Chowx, Hendersony,
McLendonz, Hendrickson & Catalyurek 2005, Zhang
& Hansen 2006, Rajasekaran & Reif 2007). All the
nodes at a given level can be processed in parallel. A
level is usually represented by a certain data struc-
tures such as Queue which is in turn accessed simul-
taneously by the di�erent processors (Rajasekaran &
Reif 2007). Every time a read or write operations
are performed, the queue has to be locked and un-
locked to ensure thread-safe behaviour (Rajasekaran
& Reif 2007). The parallel algorithm exits when there
are no more levels to process and all nodes have been
visited.

4.3 Parallelising BFS with PI

In this section, three main approaches to parallelise
the BFS algorithm are discussed. The �rst two ap-
proaches are extensions to the current PI as they pro-
vide the hasNext and next method with mechanisms
to internally retrieve the next node on the �y in a BFS
order. In other words, All the parallelisation details
such as synchronizations and communication between
threads are encapsulated internally by the iterator's
hasNext and next methods. The third approach uses
the conventional PI which was discussed in section
2 directly to parallelise the levels of the tree in a
BFS fashion. The �rst approach uses one concurrent
queue, the second uses two sequential queues with a
locking mechanism to make the approach thread-safe
and the third uses two concurrent queues with the
parallel iterator as discussed below.

4.3.1 BFS with One Concurrent Queue

This approach uses one concurrent queue which con-
tains the nodes to be processed. The concurrent
queue is a thread-safe Java implementation of Queue
where all the queuing operations are performed atom-
ically (Sun n.d.) . Each node in this approach is asso-
ciated with a level attribute which indicates the level
at which the node is in the tree as shown in Figure 3.

Figure 3 illustrates when this approach is run on
the tree shown in �gure 2. The level attributes in-
dicate which level each node is in the tree. Threads
retrieve nodes to be processed from the head of the
queue and add the successors of the retrieved nodes
to the end of the queue as show in Figure 3. Nodes

Figure 3: BFS with One Queue

are processed according to their levels in an ascending
order. For example , nodes with a level attribute 3
are not processed until all the nodes with a level at-
tribute 2 are processed. To ensure this processing or-
der a global variable, currentLevel is shared between
all the threads which indicates the current tree level
which is currently being processed. It is initialized
to 1 (i.e the root level). When all the nodes with a
current level has been processed, the global variable
currentLevel gets incremented to the value of next
level. When threads get nodes with a level attribute
which is greater than the currentLevel, those threads
wait until currentLevel gets incremented. Algorithm
2 demonstrates the approach which is implemented
by the extended PI's hasNext and next methods.
queue represents the concurrent queue used in this ap-
proach, id is the id of each thread which varies from 0
to n where n is the number of processors, levelsArray
is a 2D array which stores which level is each thread
up to and UpdateCurrentLevel is a function which
updates the value of the global variable currentLevel
to the minimum positive value stored by levelsArray.
Every time a thread update its value in levelsArray,
the function UpdateCurrentLevel is called to update
the value of the global variable currentLevel.

Algorithm 2 Parallel BFS with 1 Queue.

1 : whi le (queue i s not empty) {
2 : get node d from head o f queue
3 : get l e v e l a t t r i bu t e , v o f node d
4 : add the su c c e s s o r s o f d to end o f queue
5 : l e v e l sAr ray [id] = v
6 : UpdateCurrentLevel
7 : whi l e (v > cur rentLeve l){
8 : wait u n t i l cu r r entLeve l g e t s

incremented
9 : }
10 : p roce s s d
11 :}
12 : l e v e l sAr ray [id] = −1
13 : UpdateCurrentLevel
14 : e x i t and wait f o r other threads

to e x i t

Algorithm 2 calles the UpdateCurrentLevel func-
tion in lines 6 and 13. This function updates the
value of the currentLevel by inspecting the level val-
ues stored in the levelsArray by each thread then
setting the global currentLevel variable to the min-
imum positive value. Every time a thread retrieves
a di�erent node, the thread records the level value of
that node and stores it in the levelsArray as shown in
Algorithm 2 line 5. When a thread �nishes (i.e. line
1 returned false), its recorded level value in the 2D
array is set to −1 as shown in line 12 and is ignored
by the UpdateCurrentLevel function and hence the
function will update currentLevel to the next posi-
tive minimum value when the function gets invoked in
line 13. This ensures that the nodes which are stored
in the concurrent queue are processed in a level by

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

43

level manner (i.e. in a breadth-�rst order).

4.3.2 BFS with Two Queues and Locking

This approach uses sequential queues (i.e. queues
which do not support concurrency) with a locking
mechanism to enforce a thread-safe access of elements
in the queues. One queue in this approach is pro-
cessed at a time. Each level of the tree is stored in
one queue, say queue 1 which gets processed in par-
allel while the other queue, queue 2 gets populated
with the nodes of the next level. The approach starts
by processing the root node from queue 1 and writ-
ing the next level (i.e. successors) to queue 2. In
the following iteration it processes nodes from queue
2 and stores successors in queue 1. This approach
continues to alternate between the two queues until
all the nodes have been traversed (i.e. both queues
are empty). Since the queues which are used in this
approach are not concurrent, threads lock the queues
before performing read or write operations then un-
lock the queues when done with the operations. This
approach supports speci�ying a certain chunksize as
a parameter (i.e. number of nodes to be retrieved at
once by the thread accessing the queue). Algorithm 3
illustrates the approach which is implemented by the
extended PI. readQ is the queue which is to be read
from, writeQ is the queue which is to be written to,
n is the chunksize and SwapIfEmpty is an atomic
function which swaps the two queues if the readQ is
empty.

Algorithm 3 Parallel BFS with 2 Queues and Locks.

1 : whi le (t rue) {
1 : SwapIfEmpty
2 : l ock readQ
3 : i f (readQ i s not empty) {
4 : get top n nodes from readQ
5 : unlock readQ
6 : lock writeQ
7 : add su c c e s s o r s o f n to writeQ
8 : unlock writeQ
9 : p roce s s the n nodes
10 : } e l s e {
11 : unlock readQ
12 : e x i t and wait f o r a l l other

threads to e x i t
13 : }
14 :}

4.3.3 BFS with Two Queues and Parallel It-
erator

This approach applies the same concept which was
discussed in section 4.3.2 , however it uses 2 concur-
rent queues and the PI which was discussed in section
2. Each level of the BFS is passed to the PI to be
processed concurrently by the threads until all nodes
have been processed. The approach is illustrated in
Algorithm 4.

Algorithm 4 Parallel BFS with the Parallel Iterator.

1 : whi le (s u c c e s s o r s i s not empty) {
2 : nextLeve l = {}
3 : PI = g e t I t e r a t o r (s u c c e s s o r s)
4 : whi l e (PI . hasNext){
5 : node n = PI . next
5 : p roce s s n
6 : }
5 : s u c c e s s o r s = nextLeve l
6 : }
7 : e x i t

Algorithm 4 illustrates how the structure of the
parallel BFS approach is similar to any sequential
approach. The PI encapsulates the parallelisation
details such as synchronization between threads and
locking, hence little or no code restructuring is re-
quired to parallelise the sequential algorithm. The PI
implements a barrier at the end of the iterations loop,
hence it is guaranteed that any working thread gets to
line 5 of Algorithm 4 when all the other threads have
�nished executing their iterations (i.e. all nodes in
successors are processed). Since the PI supports dif-
ferent scheduling schemes and chunksizes, using it to
parallelise BFS allows for testing this approach with
the di�erent implemented schedule policies to deter-
mine which schedule produces the best performance.
Performance results are discussed in section 4.4.

4.4 Parallel BFS Performance

The performance of the three di�erent approaches
which were discussed in section 4.3 was evaluated and
compared with a large set of experiments using a 16-
core machine. The experiments were run on wide
trees with di�erent number of nodes and granular-
ity. The granularity was varied by changing the work
per node. The speedup of the parallel algorithm is de-
terminded by SequentialT ime

ParallelT ime , where SequentialT ime
is the time taken to run the BFS by the sequential
algorithm discussed in section 4.1 and ParallelT ime
is the time taken to run the parallel BFS algorithm.

Figure 4 shows the speedup results of the one
queue approach discussed in section 4.3.1 with granu-
larity 50 ms and 2 ms per node. The x-axis represents
the number of processors (threads) which run the al-
gorithm and the y-axis represents the speedup. A
value of 1 on the x-axis represents the parallel code
run on 1 processor (i.e. using 1 thread).

(a)

(b)

Figure 4: Speedup Results of BFS with One Queue.

The dashed line shown in Figure 4a represents the
ideal expected speedup. Figure 4 shows that the per-
formance of a coarse-grained parallel BFS is better
than the �ne-grained one as the speedup lines when
the granularity is 50 ms per node are closer to the
ideal speedup unlike the speedup lines when the gran-
ularity is 2ms which is shown in Figure 4b . Figure

CRPIT Volume 107 - Parallel and Distributed Computing 2010

44

4 also shows that the speedup of the parallel algo-
rithm gets better when the number of node increases.
However, the parallel BFS with one queue approach
produces �uctuating speedup lines when tested on
�ne-grained graphs as shown in Figure 4b. This is
due to the poor termination detection of the imple-
mented algorithm which causes some threads to exit
the algorithm early while some other threads are still
writing to the concurrent queue.

The speedup results of the parallel BFS approach
with two queues and locking discussed in section 4.3.2
are shown in Figure 5. Figure 5a shows the approach
when was tested with di�erent chunksizes on a wide
graph with 16,853 nodes and a granularity of 2 ms per
node. It shows how chunk size 3 produces a slightly
better speedup than chunk size 1 since increasing the
chunksize reduces the communication overhead be-
tween processors due to the locking and unlocking of
the queues. However, increasing the chunksize to 8
produces worse performance.

The approach was also tested on wide trees with
a varying number of nodes and granularity. Since
chunksize 3 produced good performance, the ap-
proach was tested with chunksize 3. Figures 5b and
5c show some speedup results.

Figures 5b and 5c show how the performance of
the parallel BFS gets better as the granularity gets
coarser since the speedup lines in Figure 5b are the
closest to the ideal speedup. The �gure also illustrates
that increasing the problem size (i.e. more nodes) en-
hances the performance of the algorithm. When com-
paring the 2 ms granularity speedup shown in Fig-
ure 5c of this approach with the one queue approach
shown in Figure 4b, we �nd that the �uctuations in
the speedup line shown in the one queue approach are
not present in this BFS approach hence, the paral-
lel BFS with two queues and locking performs better
than the one queue approach when the granularity is
small.

The speedup results of the parallel BFS approach
with two queues and PI which was discussed in section
4.3.3 are shown in Figure 6. It was tested with a static
schedule, dynamic schedule with chunksize 1, 3 and 8
on a wide graph with 16,853 nodes and a granularity
of 2 ms as shown in Figure 6a.

Figure 6a shows that the static schedule produces
the worst performance while the dynamic sched-
ule with chunksize 3 produces the best performance
which is even better than the results which were pro-
duced by the BFS approach with locking shown in
Figure 5a.

Similar to the previous approaches, the perfor-
mance of the parallel BFS which is parallelised by
the PI gets better as the granularity gets coarser and
increasing the number of nodes enhances the perfor-
mance of the algorithm. Figure 7 shows the three ap-
proaches when tested on a coarse-grained graph (50
ms per node) shown in 7a and a �ne-grained graph (2
ms per node) shown in 7b with 1109 nodes.

Figure 7 shows that the parallel BFS with two
queues and locks produces a slightly better perfor-
mance on coarse-grained graphs than the other two
approaches. However, the parallel BFS with two
queues and PI produces the best performance on
�ne-grained graphs. For example, the speedup of
a �ne-grained wide graph with 16,853 nodes using
the 2 queues approach with the PI shown in Figure
7b reaches around 2.8 whereas in the one queue ap-
proach and the two queues approach with locking, the
speedup reaches around 2.4 and 2.7 respectively.

(a)

(b)

Figure 7: Comparing the three parallel BFS ap-
proaches on �ne-grained graphs.

5 Depth-First Search (DFS)

The depth �rst search is another searching algo-
rithm which searches deeper in the graph (Buckley
& Lewinter 2003). Given a graph G and a source
vertex s, nodes are discovered as far as possible
along each branch of G before backtracking and dis-
covering the rest of the unvisited edges(Buckley &
Lewinter 2003, Cormen et al. 2001). DFS has many
applications such as �nding strongly connected com-
ponents, topological sort algorithms and solving puz-
zles (Cormen et al. 2001, Grama, Gupta, Karypis &
Kumar 2003). The order in which nodes are expanded
in DFS is illustrated in Figure 8.

Figure 8: The order in which nodes are expanded in
DFS.

The next section discusses the sequential imple-
mentation of DFS, some previous approaches which
were taken to parallelise the algorithm followed by the
various approaches which were taken to parallelise the
graph algorithm with the PI.

The sequential DFS is di�erent to the parallel DFS
in that a leaf node such as node 3 or 4 in Figure 8 is al-
ways discovered before node 5 in the sequential DFS,
however the parallel DFS allows node 5 to be discov-
ered before node 4 since multiple threads process the
di�erent sub-trees concurrently. In other words, the
parallel DFS returns the nodes in topological order.

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

45

(a) (b) (c)

Figure 5: Speedup Results of BFS with two Queues and Locks.

(a) (b) (c)

Figure 6: Speedup Results of BFS with Parallel Iterator.

5.1 Sequential DFS

The sequential algorithm uses a stack which is a Last-
In-First-Out (LIFO) data structure. The element
which is at the top of the stack is processed �rst.
The stack initially contains the root node. As the al-
gorithm proceeds, successors are added to the top of
the stack. The nodes in the stack are processed in
a LIFO manner until there are no more nodes to be
processed. Algorithm 5 illustrates the sequential DFS
where stack is the LIFO data structure .

Algorithm 5 Sequential DFS.

1 : whi le (s tack i s not empty) {
2 : Get node n from top o f s tack
3 : Push su c c e s s o r s o f n

to stack
4 : p roce s s n
5 : }
6 : e x i t

As illustrated by Algorithm 5 , the algorithm exits
when the stack becomes empty (i.e. all nodes are pro-
cessed). Processing the nodes in this fashion enforces
a depth-�rst order.

5.2 Previous Parallel DFS Approaches

Many research attempts have approached the prob-
lem of developing a parallel DFS algorithm. Ac-
cording to research studies, the most critical char-
acteristic which determines the performance of the
DFS is load balancing (i.e. the mechanism of split-
ting work between the di�erent processors) (Grama
et al. 2003). Several researchers have parallelised DFS
by dividing the search space into sub-trees (Reinefeld
& Schnecke 1994.). Those individual sub-trees are
distributed among the processors to search them in
depth-�rst fashion. To balance the load, a processor
which has �nished its work attempts to get unpro-

cessed sub-tree form another processor (Reinefeld &
Schnecke 1994.). This is called work-stealing. In or-
der to keep all processors busy all the time, a dynam-
ical stack-splitting method can be used (Reinefeld
& Schnecke 1994.). In such method, every proces-
sor works on the node in its own local stack. When
a stack is empty, the processor requests work from
other processors. The donor processor splits its local
stack to donate unprocessed sub-trees to the processor
which requested work (Reinefeld & Schnecke 1994.).
Determining the donor processor (i.e. the target pro-
cessors which will donate unprocessed nodes to the
idle processor) can be done by several load-balancing
schemes such as Asynchronous Round Robin (ARR),
Global Round Robin (GRR) or Random Polling (RP)
(Grama et al. 2003). In the ARR scheme, each pro-
cessor stores an independent variable, target, locally
which represents the donor processor. It gets incre-
mented by each processor each time work is requested.
In the GRR scheme, the value of target is stored glob-
ally and shared between all the processors. The RP
scheme is the simplest since it selects a donor proces-
sor randomly every time a processor gets idle. The
use of a Last In First Out (LIFO) data structure such
as Stack ensures that the nodes are processed in a
depth-�rst order.

5.3 Parallelising DFS with PI

The concept of the PI was enhanced to support the
implementation DFS. The iterator was extended with
a hasNext method which returns elements to the call-
ing threads in the DFS, i.e. topological, order on the
�y. All the parallelisation details such as synchroniza-
tions and communication between threads are encap-
sulated internally by the iterator's hasNext and next
methods. Two main parallel approaches were imple-
mented, one which uses one global stack and the other
uses a local stack for each thread and one global stack
shared by all threads. The load-balancing is achieved

CRPIT Volume 107 - Parallel and Distributed Computing 2010

46

by the �rst approach via sharing the nodes (i.e. sub-
trees) which are stored in the global stack dynami-
cally. In the second approach, the load-balancing is
achieved in two ways: 1) by sharing the node which
are stored in the global stack similar to the �rst ap-
proach. 2) by explicitly stealing work from the local
stacks of the other working threads when both the
global stack and the thread's local stack are empty.
The target donor to steal work from is determined
randomly as explained in the Random Polling (RP)
scheme in section 5.2. The two approaches are ex-
plained in the following sections.

5.3.1 Parallel DFS with One Stack Approach

This approach uses one LIFO data structure, a con-
current stack. Threads poll the stack to get a node to
process then push successor to the top of the stack.
The stack stores nodes which are yet to be processed.
The nodes which are stored in the stack are processed
dynamically. Once a thread gets idle, it retrieves a
new node from the stack. The use of a stack ensures
that the nodes are processed in a topological order.
Algorithm 6 illustrates the approach where stack is
the concurrent global stack which is shared between
the threads.

Algorithm 6 Parallel DFS with One Stack.

1 : whi le (s tack i s not empty) {
2 : Get node n from top o f s tack
3 : Push su c c e s s o r s o f n to stack
4 : p roce s s n
5 : }
6 : e x i t and wait f o r a l l other

threads to e x i t

Algorithm 6 shows that no explicit locking is per-
formed in this approach since a concurrent stack im-
plementation is used. However, all the locking and
unlocking actions are implemented internally by the
concurrent stack every time a read or write requests
are performed.

5.3.2 Parallel DFS with Local Stacks and
Work Stealing

This approach uses one global stack which is shared
by all the threads and n local stacks where n is the
number of threads. Each thread stores the nodes of
its sub-tree in its local stack. Initially the global stack
contains the root of the tree and only one thread gets
access to it while the other threads are waiting to be
woken up by the working thread. The working thread
retrieves and processes the root from the global stack,
adds one successor to its local stack then pushes the
rest of the successors, if they exist, to the global stack
to be processed by other threads and wakes up all the
waiting threads. Storing only part of successors in
the local stack is better than storing all successors at
once since it produces better load balancing between
threads. It avoids the case where big sub-trees get
stored in the local stack of one thread. From this
point on, the thread reads from and writes to its local
stack until it becomes empty. All the other threads
follow the same approach (i.e. when threads get a
node from the global stack they push one successor
to their local stack and the rest to the global stack
then start accessing their local stack until it becomes
empty). When the local stack of a thread is empty,
the thread retrieves a new node from the global stack.
If the global stack is empty, the idle thread tries to get
unprocessed nodes from the bottom of a neighboring
local stack (i.e. the oldest nodes) using a random

polling scheme and stores them in its local stack. If no
extra work is available in the neighboring local stacks,
the thread exits and waits for the other threads to
exit.

5.4 Parallel DFS Performance

The performance of the two di�erent approaches was
evaluated and compared with a large set of experi-
ments using the same 16-core machine as before. The
experiments were run on wide trees with di�erent
number of nodes and granularity.

Experimental results show that the performance of
the two approaches is similar when tested on coarse-
grained graphs. Figure 9 shows the speedup results
of the approachs when tested on a graph with 5003
nodes with a granularity of 40 ms. increasing the
granularity and number of nodes produces better per-
formance.

Figure 9: Comparing the two parallel DFS ap-
proaches on coarse-grained graph.

Figure 10: Comparing the 2 parallel DFS approaches
on �ne-grained graph.

Figure 10 shows a comparison between the two ap-
proaches when tested on a �ne-grained graphs with
41,001 nodes. The result shows that the local stacks
approach performs better than the one stack ap-
proach when the granularity is small. This is due
to the fact that the overhead produced by the locking
and unlocking actions in the local stacks approach is
less than the overhead present in the one stack. In
the local stacks approach, locking is performed only
when threads �nish all the nodes in their local stack
and attempts to get more nodes from the global stack
whereas in the one stack approach locking is always
performed when getting nodes since all threads share
one global stack.

6 Minimum Spanning Tree (MST)

The Minimum Spanning Tree (MST) is one of the
most studied algorithms which has many practical
applications in wireless communication, distributed
networks (S.Meguerdichian, Koushanfar, Potkonjak
& Srivastava 2001) and medical imaging (An, Xiang

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

47

& Chavez 2000.). The MST problem determines the
minimum-weight path which connects all of the ver-
tices of a given graph G without producing any cycles.
The sum of the weights of edges in the path should
be the smallest sum possible in the graph G (Cormen
et al. 2001). Figure 11 shows the �nal MST path
(in gray) when the algorithm is run on an undirected
weighted graph.

Figure 11: Final MST Path.

6.1 Sequential MST

One of the main algorithms for computing the MST
is called Prim's algorithm. It contains a set A that
forms the resultant minimum spanning tree. All the
edges added to the set A always form a single tree.
The safe edge added to A is described as the edge with
the minimum weight that is connecting the tree in A
to a vertex that is not in the tree (Cormen et al. 2001).
The algorithm starts from an arbitrary starting ver-
tex and grows by adding safe edges to the set A until
the tree spans all vertices. When the algorithm ter-
minates, set A contains all safe edges that form the
minimum spanning tree of graph G. The sequential
MST is illustrated in Algorithm 7 where n is the num-
ber of vertices in G.

Algorithm 7 Sequential MST.

1 : S e l e c t a ver tex v and l e t V(T)={v}
and E(T)= {}

2 : whi l e (t rue){
2 : I t e r a t o r through edges o f v

and determine the edge e={v ,w} with
minimum weight which connects v
to another ver tex w where w i s
not in V(T)

3 : Add w to V(T) and e to E(T)
4 : I f (s i z e o f E(T) = n − 1)
5 : e x i t a lgor i thm
6 : e l s e
7 : v = w
8 : }
9 : }

6.2 Previous Parallel MST Approaches

One of the solutions to parallelise the MST algo-
rithm is the fast parallel implementation developed
by Bader and Cong (D.Bader & Cong 2004.). It al-
lows every processor to start from a di�erent start-
ing vertex and run Prim's algorithm simultaneously
(D.Bader & Cong 2004.). In this approach vertices
are coloured by the colour of the processor which
they were visited by. Every time an edge is to be
added to the MST by a particular processor, the pro-
cessor checks whether the vertex is coloured by its
own colour otherwise a collision with another proces-
sor occurs. In the case of collisions, the processor
stops growing the current sub-tree and exits otherwise
it continues until all vertices are visited (D.Bader &
Cong 2004.). The �nal sub trees produced in paral-
lel are merged sequentially in the end to produce the
�nal MST.

Another solution to parallelise the MST algorithm
with an adjacency-matrix is to partition the adja-
cency matrix among the p processors as shown in Fig-
ure 12 (Grama et al. 2003).

Figure 12: The partitioning of the adjacency matrix
and the distance array d .

An array d represents the distance array of length
n, where n is the number of vertices in the graph G.
Every vertex in the graph has an entry in the dis-
tance array d. This entry holds the weight value of
the most discovered minimum edge which connects
the vertex to another vertex in the graph (Grama
et al. 2003). Initially the array entries are initialized
to ∞. As a new vertex is discovered and the mini-
mum edge added to the MST, the distance array d
is updated with the weights of the incident edges of
the newly added vertex. If the weight of one of those
edges is smaller than the weight recorded in the ar-
ray, the entry value is updated to store the edge with
the minimum weight. Figure 12 shows how the dis-
tance array and the adjacency matrix are partitioned
between p processors.

The set of vertices V is partitioned to subsets with
n
p consecutive vertices subsets and each subset Vi is

assigned to each processor Pi (Grama et al. 2003).
Determining the minimum edge and updating the dis-
tance array with the newly added vertex are done in
parallel. Each Pi stores the part of the distance ar-
ray d which includes its set of assigned vertices Vi
as shown in Figure 12. Each processor computes the
edge with the minimum weight from its part of the
adjacency list and then the global minimum is com-
puted and stored in process P0 using an all-to-one
reduction process (Grama et al. 2003). The new ver-
tex that is now stored in P0 is broadcasted to all other
processes using one-to-all broadcast, the new edge is
added and then each processor updates its relevant
distance array portion with the incident edges of the
newly added vertex.

6.3 Parallelising MST with PI

The two approaches taken to parallelise MST are
based on the approaches discussed in section 6.2. In
the �rst approach processors start from a di�erent
starting vertex of the graph and run the MST algo-
rithm simultaneously. The di�erent produced sub-
trees are merged in the end sequentially. A book
keeping module, which keeps track of which nodes
have been traversed by which thread, was integrated
with the PI to implement this approach successfully.

The second approach uses a distance array and
reductions as discussed in section 6.2 to produce a
parallel version of MST. This approach uses the PI
directly by passing the distance array to the PI to
get updated in parallel and using the PI reductions
feature to extract the minimum edge.

6.3.1 Parallel MST with Book-Keeping Mod-
ule

In this approach, a list of the graph vertices is passed
to the extended PI. The extended PI issues only the

CRPIT Volume 107 - Parallel and Distributed Computing 2010

48

starting points (unvisited nodes) to threads by the
hasNext and next methods. The book-keeping mod-
ule has two main functionalities; it provides an atomic
mechanism which ensures that each node in the graph
is processed by only one thread and updates the PI
with the status of the nodes (i.e. visited or not) dur-
ing the run time of the MST algorithm as it keeps a
record of which nodes are processed by which threads
(i.e. colouring mechanism). Every time a vertex is
issued, the book-keeping module colours the vertex
by the colour of the processor which visited it. From
there, threads continue traversing the graph indepen-
dently by adding safe-edges to the �nal MST until
either the �nal MST becomes complete or collisions
occur between threads (i.e. more than one thread
attempts to access the same node). Collisions are de-
tected by the book-keeping module when more than
one thread attempt to access a node. When collisions
occur, one thread gets the unprocessed node while the
others go back to the PI to get a new unvisited start-
ing vertices. The hasNext method of the PI always
calls the book-keeping atomic methods to ensure that
the issued nodes are unvisited. When all nodes are
visited, all the sub-trees which are produced by the
di�erent threads in parallel are then merged sequen-
tially.

6.3.2 Parallel MST with Distance Array and
Reductions

This approach uses the PI presented in section 2, a
distance array d and reductions to produce a parallel
version of MST. The distance array d has an entry
for every vertex of the graph as explained in section
6.2. Each entry in d stores the edge with the minimum
weight encountered so far by the algorithm which con-
nects the corresponding vertex (i.e. the key of array
d) with some other vertex. Initially all the entries are
set to null. In this approach one edge is added to the
�nal MST edges list E(T) at a time after doing two
tasks in parallel in every iteration of the algorithm.
The �rst task is updating d after adding a new vertex
to the set of visited vertices V (T) and the second is
extracting the edge with the minimum weight from
d. At the start of the algorithm a starting vertex
is assigned and added to V (T). In every iteration
of the algorithm, an edge with the minimum weight
which connects a visited vertex in V (T) to an unvis-
ited vertex which is not in V (T) is added to E(T).
The unvisited vertex is then added to V (T).

Since two tasks are done in parallel, two instances
of the PI are created. One PI instance is used to
update d in parallel with the weights of the incident
edges of the last vertex v which was added to V (T).
This PI instance is initialized with the list of the in-
cident edges v. The second PI is used to extract the
minimum edge from d in parallel and is initialized
with a list of all vertices which are used as keys in
d. When extracting the minimum edge, every thread
stores the edge with the minimum weight from its cor-
responding part of d then the global minimum edge
is determined using the PI reductions. The algorithm
terminates when the number of added edges is equal
to n − 1 where n is the number of vertices as shown
in Algorithm 8.

Lines 4 and 11 of Algorithm 8 are executed in par-
allel using the PI. In line 18 the reduction feature
implemented by the PI is used to retrieve the global
minimum edge. Reductions in the PI are performed
in an OO fashion using a Reducible object shown in
line 10 which manages the di�erent copies of the vari-
able to be reduced(Giacaman, Sinnen & Akeila 2008).
PI implements reductions in a way which allows the
user to customize the type of reduction to be used
which makes the feature usable with any type of data

Algorithm 8 Parallel MST with Distance Array and
Reductions.

1 : S e l e c t a ver tex v and l e t
V(T)={v} and E(T)= {}

2 : whi le (t rue)
3 : PI = g e t I t e r a t o r (i n c i d en t edges o f v)
4 : whi le (PI . hasNext){
5 : edge i = PI . next
6 : update d with i i f i has weight l e s s

than what i s s to r ed in d
7 : }
8 : PI = g e t I t e r a t o r (l i s t o f a l l nodes)
9 : minimumEdge = {}
10 : Reducible globalMinEdge = {}
11 : whi le (PI . hasNext){
12 : node v = PI . next
13 : edge = d [v]
14 : i f (weight o f edge < minimumEdge){
15 : minimumEdge = edge
16 : }
17 : }
18 : FinalMinimumEdge = globalMinEdge . reduce
19 : w = vertex o f FinalMinimumEdge which i s

not v i s i t e d
20 : Add w to V(T) and FinalMinimumEdge to E(T)
21 : I f (s i z e o f E(T)=n−1) {
22 : e x i t the a lgor i thm
23 : e l s e
24 : v = w
25 : }
26 :}

and any kind of reduction (Giacaman et al. 2008). In
this approach, the PI reduction was customized in a
way which returns an edge with the minimum weight.

6.4 MST Performance Results

The performance of the two parallel MST approaches
which were discussed in sections 6.3.1 and 6.3.2 was
evaluated and compared with a large set of experi-
ments on an 8-core machine. The experiments were
run on di�erent graphs with number of nodes and
densities.

Figure 13 shows the speedup of the parallel MST
with the book-keeping approach discussed in section
6.3.1 when tested on sparse and dense graphs.

(a)

(b)

Figure 13: Speedup of MST with Book-keeping.

Figure 13a shows that the performance of the par-

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

49

(a) (b) (c)

Figure 14: Speedup of MST with Distance Array and Reductions.

allel MST gets better as the number of nodes in the
sparse graph increases. However, since the graph is
sparse, the produced speedup is not that signi�cant
(i.e. around 1.6 max). When the approach is tested
on dense graphs as shown in Figure 13b , a slightly
better performance is produced (i.e. reaches up to
around 2.1). However, Figure 13b shows that as the
number of nodes increases, the speedup gets worse
when the approach is tested on dense graphs. This
is the main limitation of this approach since running
the sequential algorithm which connects the sub-trees
produced in parallel slows down the run-time of the
algorithm and produces bad performance on dense
graphs as the number of nodes increases. This is be-
cause in dense graphs, the number of edges is equal
to V 2, where V is the number of nodes in the graph.
More edges result in more collisions and hence, more
sub-trees to be merged sequentially.

Figure 14 shows the speedup results of the paral-
lel MST approach with distance array and reductions
discussed in section 6.3.2 when tested on graphs with
low density (i.e. Sparse), medium density and high
density.

The results in Figure 14 shows that the second
parallel MST approach performs signi�cantly better
on dense graphs than the �rst approach illustrated
in Figure 13. The approach produces the best per-
formance when was tested on graphs with medium
densities as the speedup reaches up to around 4.5.

7 Conclusions

Desktop applications must be parallelised to bene�t
from the introduction of multi-core processors. How-
ever, parallelising applications is considered to be a
signi�cantly challenging task. The PI is an OO tool
which automates the process of parallelising loops in
OO applications. Graphs are excellent use cases for
the PI since they are naturally represented by ob-
jects. To maintain high productivity, readability and
maintainability of OO graph algorithms, the paral-
lelisation should be done in an OO way. Using the PI
to parallelise graph algorithms is powerful in terms
of producing a readable and maintainable code which
exhibits speedup. Three main algorithms were par-
allelised using the PI: BFS, DFS and MST. Some
parallel approaches of those algorithms required some
adaptations and improvements to be added to the PI.
The improvements include integrating a book-keeping
module with the PI to perform concurrent colouring
when running the MST and extending the hasNext
and next methods of the PI to return nodes on the
�y in breadth-�rst or depth-�rst order. Experimental
results show that the algorithms which were paral-
lelised by the PI exhibit good speedup while keeping
the readability and maintainability of an OO code.

References

Akeila, L. (2008), Parallel iterator, Technical report, ECE de-
partment, University of Auckland.

An, L., Xiang, Q. & Chavez, S. (2000.), A fast implementation
of the minimum spanning tree method for phase unwrap-
ping, in `Med. Imaging'.

Buckley, F. & Lewinter, M. (2003), A Friendly Introduction to
Graph Theory, Prentice Hall/Pearson Ed.

Cormen, T. H., Leiserson, C. E., Rivest, R. L. & Stein, C.
(2001), Introduction to Algorithms, McGraw-Hill.

Craig, I. (2001), The Interpretation of Object-oriented Pro-
gramming Languages, Springer.

D.Bader & Cong, G. (2004.), Fast shared-memory algorithms
for computing the minimum spanning forest of sparse
graphs, in `Parallel and Distributed Processing Sympo-
sium'.

Giacaman, N., Sinnen, O. & Akeila, L. (2008), Object-oriented
parallelisation: Improved and extended parallel iterator,
in `14th IEEE International Conference on Parallel and
Distributed Systems'.

Grama, A., Gupta, A., Karypis, G. & Kumar, V. (2003), In-
troduction to Parallel Computing 2nd edition, Addison-
Wesley.

N.Giacaman & O.Sinnen (2008), Parallel iterator for parallelis-
ing object oriented applications, in `7th WSEAS Interna-
tional Conference on Software Engineering, Parallel and
Distributed Systems (SEPADS'08)'.

Rajasekaran, S. & Reif, J. (2007), Handbook of Parallel Com-
puting, Models, Algorithms and Applications, CHAP-
MAN & HALL.

Reinders, J. (2007), Intel Threading Building Blocks: Out�t-
ting C++ for Multi-Core, O'Reilly.

Reinefeld, A. & Schnecke, V. (1994.), Work-load balancing in
highly parallel depth-�rst search, in `Scalable High- Per-
formance Computing Conference'.

Silvela, J. & Portillo, J. (2001), Breadth-�rst search and its
application to image processing problems, in `Image Pro-
cessing', Vol. 10, pp. 1194�1199.

S.Meguerdichian, Koushanfar, F., Potkonjak, M. & Srivastava,
M. (2001), Coverage problems in wireless ad-hoc sensor
networks, in `Proc. INFOCOM'01'.

Sun, J. (n.d.), `Java concurrent queue, retrieved from
http://java.sun.com/javase/6/docs/api/'.

Yooy, A., Chowx, E., Hendersony, K., McLendonz, W., Hen-
drickson, B. & Catalyurek, U. (2005), A scalable dis-
tributed parallel breadth-�rst search algorithm on blue-
gene/l.

Zhang, Y. & Hansen, E. A. (2006), Parallel breadth-�rst heuris-
tic search on a shared-memory architecture, in `Workshop
on Heuristic Search, Memory-Based Heuristics and Their
Applications'.

CRPIT Volume 107 - Parallel and Distributed Computing 2010

50

Experience on the parallelization of the OASIS3 coupler

Italo Epicoco1 Silvia Mocavero 2 Giovanni Aloisio1,2

1 Department of Engineering for Innovation
University of Salento,

via per Monteroni, 73100 Lecce, Italy,
Email: {italo.epicoco,giovanni.aloisio}@unisalento.it

2 Euro-Mediterranean Centre for Climate Change
Via Augusto Imperatore 16, 73100 Lecce, Italy

Email: silvia.mocavero@cmcc.it

Abstract

This work describes the optimization and paralleliza-
tion of the OASIS3 coupler. Performance evaluation
and profiling have been carried out by means of the
CMCC-MED coupled model, developed at the Euro-
Mediterranean Centre for Climate Change (CMCC)
and currently running on a NEC SX9 cluster. Our
experiments highlighted that extrapolation (accom-
plished by the extrap function) and interpolation (im-
plemented from the scriprmp function) transforma-
tions take the most time. Optimization concerned
I/O operations reducing coupling time by 27%. Paral-
lelization of OASIS3 represents a further step towards
overall improvement of the whole coupled model. Our
proposed parallel approach distributes fields over a
pool of available processes. Each process applies cou-
pling transformations to its assigned fields. This ap-
proach restricts parallelization level to the number of
coupling fields. However, it can be fully combined
with a parallelization approach considering the geo-
graphical domain distribution. Finally a quantitative
comparison of the parallel coupler with the OASIS3
pseudo-parallel version is proposed.

Keywords: OASIS3, climate models, coupled models,
performance analysis, parallel modeling

1 Introduction

Climate change models describe complex subsystems
such as oceans dynamics; atmospheric, chemical and
physical processes; vegetation and land use trans-
formations. Historically, these models have always
been stand alone applications. They are not com-
plete enough to describe the complexity of the whole
climate system, unless we consider the chance to infer
new knowledge from their coupling. A more detailed
approach is to model the climate behavior by coupling
models each others. In this context a coupler compo-
nent is a key performance factor of the overall coupled
model. The coupler acts as a ”collector” amid com-
ponent models. Its main function is to interpolate,
extrapolate, re-grid and, more in general, transform
exchanged fields. As for modeling, the coupler should
support different parallel approaches in order to be
compliant with and portable on heterogeneous paral-
lel architectures. To this aim, the OASIS3 coupler is
both OpenMP and MPI parallelized; it is possible to

Copyright c©2010, Australian Computer Society, Inc. This pa-
per appeared at 8th Australasian Symposium on Parallel and
Distributed Computing (AusPDC 2010), Brisbane, Australia.
Conferences in Research and Practice in Information Technol-
ogy, Vol. 107. Editors Jinjun Chen (Swinburne University
of Technology) and Rajiv Ranjan (University of New South
Wales), Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

select a hybrid approach or just one of the available
parallelization methods at compile time. Given the
nature of the operations performed by the coupler, its
execution time cannot overlap with component mod-
els one. Thus optimization and parallelization of the
coupler have strong impact on the wall clock time of
the overall model. Both work and results described in
this paper refer to an optimized and parallelized ver-
sion of OASIS3 adopted at the Euro-Mediterranean
Centre for Climate Change (CMCC). In particular,
the CMCC-MED (S. Gualdi, E. Scoccimarro et al.)
coupled model has been taken into account to test the
parallel coupler.
The paper is organized as follows: section 2 describes
the OASIS3 coupler; its performance profiling on the
target machine (NEC-SX9) and performed optimiza-
tion are detailed in section 3. We then detail our par-
allel approach in section 4, performance model and
its analysis in section 5. Finally, we give a qualita-
tive comparison of our proposed approach with the
OASIS3 pseudo-parallel version in section 6, an eval-
uation of alternative scheduling solutions in section 7,
and draw our conclusions.

2 The OASIS3 coupler

The coupler OASIS3 (Valcke 2006) consists of a set
of Fortran 77, Fortran 90 and C routines. At run-
time, OASIS3 acts both as a separate single process
executable, whose main aim is to interpolate coupling
fields exchanged among the component models, and
as a library (OASIS3 PSMILe) linked by the compo-
nent models in order to communicate with the cou-
pler.
OASIS3 provides several transformations and 2D in-
terpolations in order to adapt coupling fields from a
source model grid to a target one. For each exchanged
field, the user can define a set of required transforma-
tions and their order through the namcouple config-
uration file. Available transformations are grouped
into five general classes and must be strictly applied
following this logical order: time, pre-processing, in-
terpolation, ”cooking”, and post-processing. This or-
der is also supported by the OASIS3 software inter-
nal structure. It is worth noting here that trans-
formations are usually independently performed on
each field, thus transformations on a single field can
be considered as a separate task. BLASOLD and
BLASNEW transformations represent an exception
to this rule, since they introduce functional depen-
dence among fields. They perform, respectively be-
fore and after the interpolation phase, a linear combi-
nation of the current field with others or with itself.
The following steps characterized OASIS3 coupling
activity:

• An initialization step, executed once for each

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

51

run. It includes some preliminary operations
such as initialization of internal parameters, def-
inition of logical I/O units descriptors, allocation
of data structure for timing purpouse, definition
of the communication environment among pro-
cesses and grids, instantiation of variables and
opening of required files.

• The execution of a loop over the time steps. For
each time step, another loop over the sequenc-
ing index (SEQ) is performed. SEQ defines the
order for fields to be transformed. Its aim is to
allow overlapping of the coupling time with mod-
els computing time. A tag with small values of
SEQ in the namcouple file must be associated
to fields sent to the coupler from faster mod-
els; that allows overlap of OASIS3 coupling time
spent over those fields with computing time of
slower models. The loop over sequencing index
includes: (i) evaluation of the number of fields
to be exchanged among coupled models; (ii) re-
trieval of fields values from models; (iii) fields
transformation through pre-processing, interpo-
lation, cooking and post-processing operations;
(iv) delivery of those fields to the target models.

• A finalization step, including arrays deallocation
and file closing.

3 OASIS3 profiling

The OASIS3 coupler has been evaluated and pro-
filed within the CMCC-MED model, developed at the
CMCC. It is a 3-components coupled model consist-
ing of the Echam5 (Roeckner et al. 2004) T159L31
atmospheric model, the OPA 8.2 (Madec et al. 1998)
oceanic global model with a 2◦ resolution and the
Nemo (Madec 1998) Mediterranean sea model with
a 1/16◦ resolution. The atmospheric model provides
the coupler with 26 fields defined on a 480x240 spa-
tial grid; 17 are addressed to the ocean global model
and the 9 remaining are addressed to the Mediter-
ranean sea model. The ocean global model provides
the coupler with 6 fields, defined on a 182x149 spa-
tial grid, to be sent to the atmospheric model. Fi-
nally, the Mediterrenean sea model provides the cou-
pler with 3 fields, defined on an 871x253 spatial grid,
to be addressed to the atmospheric model too. The
total amount of managed fields, exchanged among the
component models, is 35, with a coupling period of
2h 40′ and thus 279 coupling steps in a month. Ta-
ble 1 lists performed transformation. Extrapolation
(over 29 fields) and interpolation (over 35 fields) are
the most frequent ones.

The coupled model has been profiled on a NEC
SX9 cluster using FTRACE analysis tool in order

Table 1: CMCC-MED namcouple configuration.

Transformation # of fields

Locktrans 8
Mask 29
Extrap [ninenn] 29
Invert 23
Scripr [distwgt] 2
Scripr [conserv] 3
Scripr [bilinear] 18
Scripr [bicubic] 12
Conserv [global] 2
Blasnew 8
Reverse 9

Figure 1: OASIS3 performance tracing.

to identify time-consuming functions. Optimiza-
tion started from these functions. In particular, a
FTRACE region has been defined in the OASIS3
code. The FTRACE output, shown in figure 1, high-
lights that clim import takes about 1900 seconds fol-
lowed by scriprmp and extrap. It is worth noting
here that clim import belongs to the CLIM library
adopted for the communication among the coupler
and the component models; it is devoted to receive
fields exchanged among models. The elapsed time
spent executing this function is actually an idle time,
since the coupler has to wait for the component mod-
els to simulate the coupling period. We can thus
safely ignore this function since it does not include
coupling time.

As table 2 shows, extrap and scriprmp are the most
time consuming transformations; they take about
96% of the total coupling time.

In the following sections we delve into details of
the optimization performed on these functions.

3.1 Extrap analysis and optimization

The extrap function performs fields extrapolation over
their masked points using the source grids. Since the
adopted weights depend only on the source grid, it
is reasonable to group fields into different datasets,
each of these characterized by the same source grid
and hence by the same weights. A field is also tagged
with a NIO parameter, whose value is 1 if weights
must be computed and written to file or 0 in case of
reading from file. It is worth noting here that the NIO
parameter is taken into account only for the first field
of a given dataset and only during the first coupling
step, it is ignored otherwise; in these cases weights
are always read from memory. The flow chart in fig-
ure 2 gives an overview of the original OASIS3 algo-
rithm. wflag is a boolean variable used to establish if

Table 2: OASIS3 performance analysis

Elapsed
Time
(sec)

%

scriprmp 608.16 64.61
extrap 283.83 30.15
clim export 46.21 4.91
others 3.14 0.33

Total Coupling Time 941.35

CRPIT Volume 107 - Parallel and Distributed Computing 2010

52

weights and addresses values for dataset i are avail-
able in main memory or not. At the beginning, wflag
is initialized to FALSE for all of the datasets; when
the coupler processes the first field of the dataset i,
the instruction control flow depends on NIO value.
Following Branch A, both definition of weights and
extrapolation of field, are jointly performed; weights
are then stored in a file. Branch B is followed when
NIO is 0 and extrapolation is performed by means of
the stored weights. In both cases, weights are stored
in main memory and wflag is asserted. That implies
extrapolation to be performed reading weights from
the main memory for every field of the same dataset
and for each of further coupling steps. Considering
the flow chart of figure 2, it is clear that:

1. weights and addresses values are written in a file
only when OASIS3 transforms the first field of a
given dataset, during the first coupling step, and
its NIO value is equal to 1;

2. weights and addresses values are read from file
only when OASIS3 transforms the first field of a
given dataset, during the first coupling step and
its NIO value is equal to 0;

3. weights and addresses values are read from main
memory otherwise.

Figure 2: Flow chart of the extrap function.

These assertions reveal that even if weights are
written, they are never read. We thus can optimize
the extrap function skipping the writing procedure.
Despite the introduction of this optimization, perfor-
mance improvement, as shown in table 3, is very poor.
This happens because weights writing is performed
only during the first coupling step.

Performance analysis of the extrap function high-
lights also some numerical issues owing to the repli-
cation of the source code on two different branches
(see figure 4). In particular, extrapolation of the first
field of each dataset is performed during weights eval-
uation (Branch A); the others are extrapolated in a
different branch (Branch B). Unfortunately, the com-
piler optimizes the two branches in different way in-
troducing some optimizing transformation of floating
point operations. Experiments show that if we change
the order of a field in the namcouple configuration file,
its value, after the extrapolation, is different. In par-
ticular, if we swap the position of two fields, the dif-
ference on the first field is about of 1.6 ·10−14%. This
displacement can absolutely be negligible. However,

Table 3: extrap performance evaluation

Elapsed
Time
(sec)

Saved
Time
(sec)

%

original 286.218
optimized 285.032 1.186 0.41

if we change the order of more then one field belong-
ing to different datasets, this displacement produces a
0.25% difference on the netcdf output files generated
by one simulated month. This discrepancy is relevant
since it is due only to a different order of the fields in
the namcouple file. To solve this problem, the code
performing weights evaluation and extrapolation has
been split. In this way, all the fields, including the
first one of each dataset, is extrapolated using the
same piece of code. The final solution is represented
in figure 3.

Figure 3: Optimized extrap transformation.

3.2 Scripr analysis and optimization.

The scriprmp routine implements the interpolation
techniques offered by the Los Alamos National Lab-
oratory SCRIP1.4 library. In particular, it performs
a remapping of the fields using weights and addresses
evaluated taking into account the source grid, the tar-
get grid, the type of interpolation to be used and the
normalization option. For each field, the scriprmp
function checks whether the file containing remap-
ping weights exists. If not, they are first evaluated
and then written to a file for the further coupling
steps.
At each coupling step, an access to the file is per-
formed. The main optimization concerns the manage-
ment of remapping weights into the main memory, in
order to reduce the time spent for I/O operations. As
detailed in table 4, this optimization reduces elapsed
time for the scriprmp function of 40%. The over-
all optimizations of the sequential version of OASIS3,
performed on both the scriprmp and the extrap func-
tions, is shown in table 5. As previously described,
the optimizations were mainly focused on reducing
the I/O time. The main contribution to the opti-
mization has been gained in the scriprmp function.
The overall performance improvements is 27% of the
whole coupling time.

4 Per field parallelization

In order to further reduce the elapsed time of coupling
transformations, a parallel version of the algorithm
has been developed. Adopted parallel approach is
the master/slaves model. Since computation of each
field is independent from the others, slaves do not
communicate with each other. The master distributes

Table 4: scripr performance evaluation

Elapsed
Time
(sec)

Saved
Time
(sec)

%

original 617.129
optimized 367.615 249.514 40.43

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

53

Figure 4: extrap numerical displacement.

Table 5: OASIS3 optimization

Extrap Scripr Others Coupling
Saved
Time
(sec)

%

original 286.218 617.130 1.008 904.360
optimized 285.032 367.620 1.018 653.670 250.690 27.72

fields to slaves and collects them after the execution of
coupling operations, using the MPI library, as shown
in figure 5. Each OASIS3 process is then in charge of
computing all of the foreseen transformations for each
assigned fields. The design of the parallel algorithm
is driven by two main factors:

1. load balancing among OASIS3 processes;

2. maximum communication reduction.

It is necessary to consider that different fields
could require different number and type of trans-
formations; moreover they are also defined on dif-
ferent grids at different resolutions. This implies
that coupling time cannot be considered constant
for every field. Since computing time of each par-
allel task is not uniform and not known at com-
pile time, a dynamic scheduling approach should be
preferable (Quinn 2004). However, in this case, this
choice should introduce an overhead of the same or-
der of magnitude of computing time. For this rea-
son, a static scheduling algorithm to distribute fields
to available processes, has been implemented. Fields
are allocated to processes taking into account the se-
quencing index (SEQ) and the presence of a corre-
lation among fields. That happens when a field is a
linear combination of other fields, using the BLAS-
NEW and/or BLASOLD transformations. The se-
quencing index defines an order for fields to be trans-
formed. It has been introduced to allow overlapping
coupling time with models computing time. Indeed,
fields sent to the coupler from faster models must
be tagged, in the namcouple file, with smaller values
of SEQ. This way, the OASIS3 coupling time spent
over these fields is overlapped with computing time
of slower models. This constraint introduces a tem-
poral dependence among processes: the process per-
forming transformation of a field with a high SEQ
value should wait for those processes responsible for
fields with a smaller sequencing index. To avoid some
processes idle time, the scheduling policy must take

into account the SEQ value of each field: fields with
the same SEQ must be uniformly distributed to the
available processes. In this case, the maximum num-
ber of fields with the same sequencing index gives
the maximum level of parallelism. Since the relation-
ship among fields introduced by the use of SEQ is
not a functional dependence, a field with a high SEQ
value does not need to know results form those with
smaller SEQ value; this implies that the sequencing
order does not introduce communication among pro-
cesses.

Figure 5: OASIS3 parallel approach.

If a given field A is a linear combination of one or
more fields B, C (BLASNEW and BLASOLD trans-
formations), the process performing A must wait for
the transformations of B and C to be completed and

CRPIT Volume 107 - Parallel and Distributed Computing 2010

54

must communicate with the respective processes. In
order to avoid communications, the scheduling algo-
rithm aggregates fields with functional dependence
and assigns them to the same process. Since coupling
time taken by each field is not known at scheduling
time, the algorithm aims at balancing the number of
fields assigned to each process. The scheduling algo-
rithm is structured as follow:

1. fields are aggregated in different groups GSEQ

according to the SEQ value;

2. within each GSEQ, fields are further grouped in
bundles BSEQ,i according to functional depen-
dencies established by BLASNEW and BLA-
SOLD transformations. Each bundle is ranked
with an integer given by the cardinality of the
set: ri = |BSEQ,i|;

3. for each GSEQ, the bundles BSEQ,i are sorted by
rank in descending order;

4. each MPI process is labeled with an integer lj
representing the number of fields currently as-
signed to process j. For each GSEQ:

(a) lj is initialized to zero;

(b) bundle BSEQ,i, with maximum rank and
not assigned yet, is associated with the pro-
cess j having the minimum lj ;

(c) the rank of bundle ri is added to lj;

(d) the algorithm iterates from step b for each
bundle belonging to current GSEQ.

Unfortunately such an approach cannot guarantee
a good load balancing for each configuration, since it
assumes that each field takes the same coupling time.
Moreover, the balancing is also influenced by the or-
der of fields in the namcouple configuration file. More
accurate algorithm should take into account the dif-
ferent coupling time requested by each field balancing
the load according to it.
The resulting parallel algorithm is then structured as
follow:

1. at the beginning of the simulation, the scheduling
algorithm defines the sets of fields to be assigned
to each available process, according to the ac-
tual configuration and taking into account SEQ
values, BLASNEW and BLASOLD transforma-
tions;

2. at each coupling step, the master process of OA-
SIS3 gets the fields from the models and scatters
them to the slaves, according to the distribution
policy established by the scheduling algorithm;

3. each slave process performs coupling transforma-
tions on the assigned fields and sends them to the
master;

4. master process exports them to the models.

4.1 Parallel model

In this section, we define the analytic model of the ex-
ecution time of our parallel algorithm. The coupled
model elapsed time depends on many factors: number
of processes assigned to a single component model;
overhead introduced by communications among pro-
cesses of a model (intra-model communication over-
head); coupling transformations and so on. In this pa-
per we focus only on the aspects affecting the coupler
behavior. Elapsed time of the CMCC-MED model
can be devised as the sum of the following compo-
nents:

1. initialization of the computing environment;

2. time spent by component models, also including
intra-model communications;

3. computing time to perform coupling transforma-
tions: it is important to properly evaluate this
time, since it could partially overlap with com-
puting time of component models;

4. communication overhead within the coupler: also
this time could be partially overlapped with mod-
els computing time;

5. finalization of the simulation.

Since we are interested in the coupler parallel be-
havior, we establish the number of processes assigned
to component models and considered time for execut-
ing models as intrinsically sequential, constant and
independent from the number of processes assigned
to the coupler. This choice is also supported by the
consideration that the parallelization effort concerned
only the coupler and not the whole coupled model.
Moreover, a careful analysis leads us to infer that ini-
tialization and finalization operations cannot be par-
allelized. The intrinsically sequential time, Tseq, can
be expressed as:

Tseq = Tinit + Tmodels + Tend (1)

hence the parallel time is given by:

Tpar = Tseq + numcouple · (Tcouple + Tcom) (2)

where numcouple represents the total number
of coupling steps occurring during the simulation;
Tcouple is the elapsed time required by the slowest pro-
cess to transform its assigned fields; and Tcom repre-
sents the communication overhead occurring in a cou-
pling step to transfer fields from the OASIS3 master
process to slaves and back.
The aforementioned SEQ values can be used to par-
tially overlap coupling time with computing time
spent by the component models. Let us define Fi

as the set of fields assigned to the process i. This set
may contain fields with different SEQ values; it can
also be thought as the union of disjoined subsets Gi,j

containing fields assigned to process i with SEQ j .
Defining s∗ as the maximum SEQ value, we have:

Fi =
s∗

⋃

j=1

Gi,j (3)

It is worth noting here that the coupling time de-
pends only on the set of transformations applied to
fields with the maximum value of SEQ ; hence Tcouple

can be expressed as:

Tcouple = maxi

∑

k∈Gi,s∗

Ttrk
(4)

where index i represents the process and Ttrk
is

the elapsed time for coupling transformations applied
on field k. Communication overhead has been mod-
eled according to the standard linear communication
model (Foster 1995),(Nupairoj et al. 1994). At each
coupling step, OASIS3 takes Tpp time for point-to-
point communications and Tbroad time for broadcast
communications. Thus,

Tcom = Tpp + Tbroad

= Ts(1 + log 2p) · n∗

+Tb ·
∑

j∈Gi,s∗
(Limj

+ Lexj
· log2 p)

(5)

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

55

where Ts and Tb are machine dependent param-
eters and represent respectively the communication
latency and inverse of the effective throughput of
the communication channel. Limj

and Lexj
are the

lengths (in bytes) of field j, used respectively during
import and export operations; p is the number of in-
volved processes. n∗ is the highest cardinality (over
the processes i) of set containing fields with value of
SEQ equal to s∗, given by:

n∗ = maxi{|Gi,s∗ |} (6)

5 Parallel performance analysis

The model previously described has been validated
performing several tests on the NEC SX9 clus-
ter available at the CMCC Supercomputing Center.
Some preliminary tests have been executed in order to
experimentally evaluate the latency and throughput
of the communication channel. Since the architecture
consists of 7 nodes and 16 processors for each node,
both intra-node and inter-node communications may
take place. However, we can safely generalize con-
sidering only inter-node communication. Indeed, the
best configuration for the CMCC-MED would map
the OASIS3 master process on the same node of the
slowest component model master process (in order to
minimize the time for communication among mod-
els and coupler). OASIS3 slaves processes must be
mapped on different nodes. The features of the SX9
node are reported on table 6.

Table 6: NEC-SX9

NEC SX-9

Performance per CPU Over 100 GF
Machine cycle (clock) 3.2 GHz
Memory bandwidth 4 TB/s
Memory capacity per node 512 GB
CPUs per node 16
Peak performance per node 1.6 TF
I/O Data rate 64 GB/s
Internode bandwidth (peak) 128 GB/s x 2

Ts 3.40 · 10−06

Tb 2.30 · 10−11

Table 7: Sequential time

Init Time 2.08 · 10+01

Models Time 3.67 · 10+03

End Time 3.73 · 10−05

It is worth reminding that performance analysis is
mainly focused on the evaluation of the coupler par-
allelization; then the number of processes assigned to
the component models has been pre-defined, chang-
ing the number of processes assigned to the coupler.
The configuration we used is as follow:

• Ocean global: 1 processor on node A.

• Mediterranean sea: 6 processors on node A.

• Atmosphere: 8 processors on node A.

• Coupler: 1 processor on node A and (p − 1)/2
processors on nodes B and C.

Table 8: Parallel time

#
field
(k)

Ttrk

(sec)
Lexk

(byte)
Limk

(byte)

1 4.56 · 10−2 921600 216944
2 4.15 · 10−2 921600 216944
3 4.30 · 10−2 921600 216944
4 3.92 · 10−2 921600 216944
5 3.93 · 10−2 921600 216944
6 4.04 · 10−2 921600 216944
7 1.27 · 10−1 921600 1762904
8 1.25 · 10−1 921600 1762904
9 1.26 · 10−1 921600 1762904

10 4.82 · 10−2 216944 921600
11 4.63 · 10−2 216944 921600
12 4.61 · 10−2 216944 921600
13 4.63 · 10−2 216944 921600
14 4.84 · 10−2 216944 921600
15 4.57 · 10−2 216944 921600
16 4.66 · 10−2 216944 921600
17 4.62 · 10−2 216944 921600
18 2.67 · 10−1 216944 921600
19 3.95 · 10−2 216944 921600
20 2.64 · 10−1 216944 921600
21 3.93 · 10−2 216944 921600
22 3.93 · 10−2 216944 921600
23 3.93 · 10−2 216944 921600
24 4.26 · 10−2 216944 921600
25 2.69 · 10−2 216944 921600
26 2.68 · 10−2 216944 921600
27 8.07 · 10−2 1762904 921600
28 7.52 · 10−2 1762904 921600
29 8.00 · 10−2 1762904 921600
30 7.70 · 10−2 1762904 921600
31 5.63 · 10−2 1762904 921600
32 5.49 · 10−2 1762904 921600
33 5.53 · 10−2 1762904 921600
34 4.06 · 10−2 1762904 921600
35 4.08 · 10−2 1762904 921600

With this configuration, Tseq time components have
been evaluated, as shown in table 7. Table 8 lists
coupling time of each field.

In order to have a wide analysis range, we have im-
posed SEQ = 1 for each field, regardless of the speed
of the component models; in this way, the number
of processors ranges from 1 to 35, that is the total
number of fields exchanged through the coupler.

The performance model demonstrated that scala-
bility is heavily limited by the coarse grained paral-
lelization based on both the distribution of the fields
among the processors and the different kind and num-
ber of transformations performed on the fields. The
scalability analysis shows that the algorithm reaches
a 50% efficiency with 13 processors, corresponding to
a computational load of about 3 fields per process.
The developed parallel approach heavily influences
the load balancing among processors. The commu-
nication overhead takes just almost 2% of the cou-
pling time and it cannot be considered the limitation
factor.

Figures 6-8 depict coupling time (on one simu-
lated month numcouple = 279), speed-up and effi-
ciency of the parallel algorithm with a number of
processors ranging from 1 to 35. The analytic perfor-
mance model approximates the real behavior of the
algorithm with a standard deviation of 2.4%, hence

CRPIT Volume 107 - Parallel and Distributed Computing 2010

56

Table 9: Parallel OASIS3 performance evaluation

of procs
Execution
Time
(sec)

Efficiency Speed up

1 645.13 1.00 1.00
2 351.80 0.92 1.83
3 274.86 0.78 2.35
5 210.83 0.61 3.06
7 191.12 0.48 3.38
9 174.17 0.41 3.70

11 181.22 0.32 3.56
13 110.77 0.45 5.82
15 99.71 0.43 6.47
17 95.28 0.40 6.77
26 90.01 0.28 7.16
33 89.59 0.22 7.20

Figure 6: Parallel OASIS3 speedup.

it can be considered reliable. As confirmed by the
swing trend of the speed-up and efficiency functions,
the coarse grained parallelization produces worst per-
formance when the number of fields is not perfectly
divisible by the number of processes, whereas differ-
ent number and kind of transformations deteriorate
performance even if the number of fields is divisible by
the number of processes (i.e. p = 5, 7). Experimental
data obtained analyzing parallel performance is also
reported in table 9. As we previously highlighted, a
limit of our proposed approach is that the scheduling
policy considers the time taken for coupling transfor-
mations constant for each field. Better performance
could be achieved taking into account the different
computational load required by applying transforma-
tions on different fields and trying to better balance
the load among processors. But a per-field paralleliza-
tion is still limited by the total number of fields. The
highest level of parallelism can be achieved by com-
bining the proposed approach with a parallelization
based on a spatial domain decomposition. The timing
model can be used for further considerations concern-
ing the suitability of a distributed approach for this
problem. In our case, two main reasons restrict the
adoption of a distributed approach: (i) the parallelism
level of the proposed algorithm is strongly limited by
the number of fields to be transformed (it is rare that
the number of exchanged fields is greater than 100);
(ii) communication overhead in a distributed environ-
ment has a stronger impact on parallel performance.
Several distributed approaches and frameworks ex-
ploit the architectures heterogeneity to improve the
parallelization level. In this context different frame-
works exist: MapReduce, GRIDSs, Condor are char-
acterized by efficient mechanisms for managing re-

Figure 7: Parallel OASIS3 efficiency.

Figure 8: Parallel OASIS3 execution time.

sources, enhancing the fault tolerance and handling
node heterogeneity. Generally, these frameworks use
I/O operations for communication and hence they
are not suitable for coupler parallelization since the
communication overhead would exceed the computing
time.

5.1 Implementation details

The implementation of the parallel algorithm has
been fully integrated in the official version of the OA-
SIS3 coupler, distributed by CERFACS. Code mod-
ification has been made minimizing the impact on
the structure of the original code. Taking into ac-
count that the CLIM libraries, used by the coupler to
communicate with the component models, supports
both MPI1 and MPI2, the parallel model has been
accordingly implemented. More in detail, with MPI1
(Gropp et al. 1996) implementation, a MPMD (Fos-
ter et al. 1997) approach is adopted; component mod-
els and coupler are executed launching different exe-
cutables. Only the process itself then knows its ”spe-
cialization”; an initialization step where the colour
of models is exchanged allows each process to know
masters and slaves of each model. A communicator
for each model, including the coupler, is created using
the MPI Comm split function.

The MPI2 (Gropp et al. 1998) implementation fol-
lows a different approach: with the mpirun com-
mand, only the coupler processes are instantiated.
The executables names and the number of processes
to be spawn for each component model are also passed
through the command line to the OASIS3 executable.
In this case, the OASIS3 communicator is dupli-
cated from the MPI COMM WORLD at the begin-
ning; other communicators are then created during
the spawn of the corresponding processes.

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

57

The two implementations differ only on the man-
agement of the communicators. Once the coupler
communicator has been created, communications are
executed within it.

6 Comparison with the pseudo parallel ver-
sion

A qualitative comparison between the proposed ap-
proach and the pseudo-parallel implementation of
OASIS3 by CERFACS, has been performed. In the
pseudo-parallel approach, each OASIS3 process must
have its own namcouple file, carefully created by the
modeler. Each process is then independent and un-
aware of the existence of others. It directly commu-
nicates with models exchanging fields included into
its namcouple file. Such an approach implements a
distributed communication with models. It avoids
the bottleneck represented by a single master pro-
cess in charge of both the exchange of all fields with
the models and the coordination of the slaves. The
manual definition of the namcouple file allows accu-
rately distributing fields among the processes taking
also into account the computational load required
by each field. The main disadvantage of a pseudo-
parallel approach regards the configuration. Indeed,
the user is charged with the burden of creating nam-
couple files, every time the number of OASIS3 pro-
cesses changes. Moreover, the parallel version of OA-
SIS3 provides both MPI1 and MPI2 CLIM commu-
nication techniques, whereas the pseudo-parallel ver-
sion only supports MPI1.

7 Evaluation of different scheduling policies

Our proposed approach for scheduling and for map-
ping the fields to the processors, suffers mainly be-
cause coupling time, for each field, is not known
at compile time. Thus, the algorithm assigns each
field the same weight. More efficient algorithms
can be taken into consideration in order to reduce
the parallel time. A dynamic scheduling algorithm
would distribute fields to processes according to a re-
quest/response approach. At the beginning, one field
for each process is assigned. The generic process i
requests a new field to be transformed as soon as it
ends the transformation of the current field. This ap-
proach generally behaves better with respect to the
round-robin algorithm, but it is still influenced by the
order of the fields in the namcouple configuration file.
The best case for this dynamic approach is when fields
are ordered from the most time consuming to the less
one. In this case, the dynamic allocation of fields be-
haves exactly as the MaxMin approach (Maheswaran
et al. 1999). The worst case happens when fields are
sorted in descending order. Figure 9 depicts perfor-
mance obtained with different scheduling approaches.

The MaxMin algorithm is a static approach, but
it assumes that coupling time for each field is already
known. Fields are sorted in descending order with
respect to the coupling time and each field is assigned
to the process with the current minimum computing
load. This approach is the best one, but it requires a
profiling phase in order to establish the coupling time
for each field.

8 Conclusions

In this work, we presented optimization and paral-
lelization of one of the most deployed coupler. Before
dealing with parallelization of a code, it is necessary
to deeply understand why it badly performs on the
target architecture; that involves optimizations. The

Figure 9: Elapsed time of the OASIS3 using different
scheduling policies.

Table 10: Parallel OASIS3 improvements

Coupling
Time
(sec)

Saved
Time
(sec)

%

original 904
parallel (13 proc) 110 794 87.83

profiling phase is mandatory to identify hot-spot func-
tions and to drive optimization. Further level of im-
provement can be reached with parallelization, after
a deep analysis of the algorithm and identification of
both data and functional dependencies. In the case
here discussed, with just the optimization and elim-
ination of useless I/O operations, the coupling time
has been reduced of 27%. Even if the parallelization
strategy is coarse grained, it allowed a coupling time
reduction up to 80% of the original sequential version,
with 13 processors (see table 10).

As we expected, the coarse grained parallel ap-
proach cannot guarantee a good load balancing and
it limits the level of parallelism. The counterpart is
that communication overhead is minimum.

In order to enhance the parallel performance some
improvements can be adopted:

• the scheduling algorithm can be modified in or-
der to self adapt to computing requirements and
to take into account coupling time of each field,
allowing a better load balance. If a scheduling al-
gorithm could know coupling time for each field,
it should be able to better distribute load among
processes. The scheduler can obtain this infor-
mation by means of a profiling phase of the cou-
pled model; otherwise, the scheduler could self
adapt, keeping track of the time taken by each
field to simulate a month and using this informa-
tion for the scheduling policy of the next month;

• memory bank conflicts (about 40%) (NEC 2006)
during OASIS3 execution on the vector machine
could be resolved by means of a further opti-
mization step. Bank conflicts occur when two or
more processes try to simultaneously access to
the same memory bank. The code can be suit-
ably modified avoiding bank conflicts;

• OASIS4 (Valcke et al. 2007) is the new parallel
version of the coupler, developed by CERFACS
and based on a geographical domain decompo-
sition of fields among processes. Performance
evaluation of this new coupler can be performed
using the CMCC-MED couple model. These two

CRPIT Volume 107 - Parallel and Distributed Computing 2010

58

parallel approaches can be integrated in a unique
solution;

• the CMCC Supercomputing Center has also an
IBM supercomputer with 10 power6 nodes for
a total number of 960 cores. The performance
evaluation of parallel OASIS3 on the scalar ar-
chitecture can be performed in order to evaluate
the behavior of the code on a many core system
compared with a vector one;

• the parallel coupler has been validated on a set
of available transformations. A complete test of
available transformations is needed;

• climate change studies involve several coupled
models. They are obtained using different cli-
mate models, but also different couplers. Perfor-
mance comparison of parallel OASIS3 with other
couplers such as the NCAR CPL coupler (Bryan
et al. 1996) represents a further step to evaluate
pros and cons of our approach.

References

Euro-Mediterranean Centre for Climate Change
http://www.cmcc.it

Bryan F.O., Kauman B.G., Large W.G., Gent P.R.
(1996), The NCAR CSM FluxCoupler, NCAR
Technical Note NCAR/TN-424+STR, National
Center for AtmosphericResearch.

NEC Corporation (2006), SUPER-UX performance
tuning guide.

Foster I., Geisler J., Tuecke S., Kesselman
C. (1997), ‘Multimethod Communication for
High-Performance Metacomputing’, Proceedings of
ACM/IEEE Supercomputing , 1–10.

Foster I.T. (1995), Designing and Building Parallel
Programs : Concepts and Tools for Parallel Soft-
ware Engineering, Addison-Wesley.

Snir M., Huss-Lederman S., Lumsdaine A., Lusk E.,
Nitzberg B., Saphir W., Snir M. (1998), MPI The
complete reference: Volume 2, the MPI-2 exten-
sions, The MIT Press.

Madec G. (2008), NEMO ocean engine, Institut
Pierre-Simon Laplace (IPSL).

Madec G., Delecluse P., Imbard M. & Levy C.
(1998), OPA 8.1 Ocean General Circulation Model
Reference Manual, Institut Pierre-Simon Laplace
(IPSL).

Maheswaran M., Ali S., Siegel H. J., Hensgen D.,
Freud R. (1999), ‘Dynamic Matching and Schedul-
ing of a Class of Independent Tasks onto Het-
erogeneus Computing Systems’, 8th Heterogeneus
Computing Workshop (HCW99).

Nupairoj N., Ni L.M. (1994), ‘Performance Evalua-
tion of Some MPI Implementations on Workstation
Clusters’, Proceedings of the 1994 Scalable Parallel
Libraries Conference (SPLC94) , 98–105.

Quinn M.(2004), Parallel programming in c with mpi
and openmp, McGraw Hill.

Roeckner E., Brokopf R., Esch M., Giorgetta M.,
Hagemann S., Kornblueh L., Manzini E., Schlese U.
& Schulzweida U. (2004), The atmospheric general
circulation model ECHAM5, Max Planck Institute
(MPI).

Snir M., Otto S., Huss-Lederman S., Walker D., Don-
garra J. (1996), MPI: The Complete Reference, The
MIT Press.

Valcke S. (2006), OASIS3 User Guide, CERFACS.

Valcke S., Redler R. (2007), OASIS4 User Guide,
CERFACS.

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

59

CRPIT Volume 107 - Parallel and Distributed Computing 2010

60

1

Classification of Malware Using Structured Control Flow

Silvio Cesare and Yang Xiang
School of Management and Information Systems

Centre for Intelligent and Networked Systems

Central Queensland University

Rockhampton, Queensland 4702, Australia

silvio.cesare@gmail.com; y.xiang@cqu.edu.au

Abstract

Malware is a pervasive problem in distributed computer

and network systems. Identification of malware variants

provides great benefit in early detection. Control flow has

been proposed as a characteristic that can be identified

across variants, resulting in flowgraph based malware

classification. Static analysis is widely used for the

classification but can be ineffective if malware undergoes

a code packing transformation to hide its real content.

This paper proposes a novel algorithm for constructing a

control flow graph signature using the decompilation

technique of structuring. Similarity between structured

graphs can be quickly determined using string edit

distances. To reverse the code packing transformation, a

fast application level emulator is proposed. To

demonstrate the effectiveness of the automated unpacking

and flowgraph based classification, we implement a

complete system and evaluate it using synthetic and real

malware. The evaluation shows our system is highly

effective in terms of accuracy in revealing all the hidden

code, execution time for unpacking, and accuracy in

classification.
.

Keywords: Network security, malware, structured control

flow, unpacking.

1 Introduction

Malware, short for malicious software, means a variety of

forms of hostile, intrusive, or annoying software or

program code. Malware is a pervasive problem in

distributed computer and network systems. Detection of

malware is important to a secure distributed computing

environment. The predominant technique used in

commercial anti-malware systems to detect an instance of

malware is through the use of malware signatures.

Malware signatures attempt to capture invariant

characteristics or patterns in the malware that uniquely

identifies it. The patterns used to construct a signature

have traditionally derived from the malware’s machine

code and raw file contents.

Traditional malware signatures ineffectively capture

the invariant characteristics common in self-mutating and

modified variants in a strain of malware. Static analysis

provides alternative characteristics that can be used.

Copyright © 2010, Australian Computer Society, Inc. This

paper appeared at the 8th Australasian Symposium on Parallel

and Distributed Computing (AusPDC 2010), Brisbane,

Australia. Reproduction for academic, not-for-profit purposes

permitted provided this text is included.

Static analysis incorporating ngrams (Kolter and

Maloof 2004, Karim et al. 2005), edit distances

(Gheorghescu 2005), and control flow (Carrera and

Erdélyi 2004, Dullien and Rolles 2005, Briones and

Gomez 2008) have been proposed. A malware's control

flow information provides static analysis a characteristic

that is identifiable across strains of malware variants.

This characteristic is shared because variants of malware

often reuse code from earlier strains and versions. This

reuse of code can be identified through isomorphic and

similar flow graphs.

To hinder static analysis, the malware's real content is

frequently hidden using a code transformation known as

packing. Packing is not solely used by malware. Packing

is also used in software protection schemes and file

compression for legitimate software, yet the majority of

malware also uses the code packing transformation. In

one month during 2007, 79% of identified malware was

packed (Panda Research 2007). Additionally, almost 50%

of new malware in 2006 were repacked versions of

existing malware (Stepan 2006).

Unpacking is a necessary component to perform static

analysis and reveal the hidden characteristics of malware.

In the problem scope of unpacking, it can be seen that

many instances of malware utilise identical or similar

packers. Many of these packers are also public, and

malware often employs the use of these public packers.

Many instances of malware also employ modified

versions of public packers. Being able to automatically

unpack malware in any of these scenarios, in addition to

unpacking novel samples, provides benefit for static

analysis to occur.

Automated unpacking relies on typical behaviour seen

in the majority of packed malware – hidden code is

dynamically generated and then executed. The hidden

code is naturally revealed in the process image during

normal execution. Monitoring execution for the dynamic

generation and execution of the malware’s hidden code

can be achieved through emulation. Emulation provides a

safe and isolated environment for malware analysis.

In this paper we present a system that employs

dynamic and static analysis to automatically unpack and

classify a malware instance as a variant, based on

similarities of control flow graphs.

This paper makes the following contributions. First,

we propose a novel algorithm for approximate

identification of flowgraphs based on treating decompiled

structured flowgraphs as signatures. These signatures can

then be used to query a malware database for

approximate matches, using the edit distance to indicate

similarity. Second, we propose and evaluate automated

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

61

2

unpacking using application level emulation that is fast

enough for potential integration into desktop Antivirus.

The automated unpacker is capable of unpacking a known

samples and also capable of unpacking unknown samples.

We also propose a novel algorithm for determining when

to stop emulation during unpacking using entropy

analysis. Finally, we implement and evaluate our ideas in

a prototype system that performs automated unpacking

and malware classification.

The structure of this paper is as follows. Section 2

describes related work in automated unpacking and

malware classification. Section 3 refines the problem

definition and our approach to the proposed complete

classification system. Section 4 describes the design and

implementation of our prototype system. Section 5

evaluates our prototype using synthetic and real malware

samples. Finally, Section 6 summarizes and concludes the

paper.

2 Related Work

Automated unpacking employing whole system

emulation was proposed in Renovo (Kang et al. 2007)

and Pandora's Bochs (Boehne 2008). Whole system

emulation has been demonstrated to provide effective

results against unknown malware samples, yet is not

completely resistant to novel attacks. Renovo and

Pandora’s Bochs both detect execution of dynamically

generated code to determine when unpacking is complete

and the hidden code is revealed. An alternative algorithm

for detecting when unpacking is complete was proposed

using execution histograms in Hump-and-dump (Sun et

al. 2008) . The Hump-and-dump was proposed as

potentially desirable for integration into an emulator.

Polyunpack (Royal et al. 2006) proposed a combination

of static and dynamic analysis to dynamically detect code

at runtime which cannot be identified during an initial

static analysis. The main distinction separating our work

from previously proposed automated unpackers is our use

of application level emulation and an aggressive strategy

to determine that unpacking is complete. The advantage

of application level emulation over whole system

emulation is significantly greater performance.

Application level emulation for automated unpacking has

had commercial interest (Graf 2005) but has realized few

academic publications evaluating its effectiveness and

performance.

Dynamic Binary Instrumentation was proposed as an

alternative to using an instrumented emulator (Quist and

Valsmith 2007) employed by Renovo and Pandora’s

Bochs. Omnipack (Martignoni et al. 2007) and Saffron

(Quist and Valsmith 2007) proposed automated

unpacking using native execution and hardware based

memory protection features. This results in high

performance in comparison to emulation based

unpacking. The disadvantage of these approaches is in the

use of the unpacking system on E-Mail gateways, which

forces the provision of a virtual or emulated sandbox in

which to run. A virtual machine approach to unpacking

using x86 hardware extensions was proposed in Ether

(Dinaburg et al. 2008). The use of such a virtual machine

and equally to whole system emulator is the requirement

to install a license for each guest operating system. This

restricts desktop adoption which typically has a single

license. Virtual machines are also inhibited by slow start-

up times, which again are problematic for desktop use.

The use of a virtual machine also prevents the system

being cross platform as the guest and host CPUs must be

the same.

Malware classification has been proposed using a

variety of techniques (Kolter and Maloof 2004, Karim et

al. 2005, Perdisci et al. 2008). A variation of ngrams,

coined nperms has been proposed (Karim et al. 2005) to

describe malware characteristics and subsequently used in

a classifier. An alternative approach is using basicblocks

of unpacked malware, classified using edit distances,

inverted indexes and bloom filters (Gheorghescu 2005).

The main disadvantage of these approaches is that minor

changes to the malware source code can result in

significant changes to the resulting bytestream after

compilation. This change can significantly impact the

classification. Flowgraph based classification is an

alternative method that attempts to solve this issue by

looking at control flow as a more invariant characteristic

between malware variants.

The commercial automated unpacking and structural

classification system Vxclass (Zynamics) is most related

to our research. Vxclass presents a system for unpacking

and malware classification based on similarity of

flowgraphs. The algorithm in Vxclass is based on

approximately matching flowgraphs by identifying fixed

points in the graphs and successively matching

neighbouring nodes (Carrera and Erdélyi 2004, Dullien

and Rolles 2005, Briones and Gomez 2008). BinHunt

(Gao et al. 2008) provides a more thorough test of

flowgraph similarity by soundly identifying the maximum

common subgraph, but at reduced levels of performance

and without application to malware classification.

Identifying common subgraphs of fixed sizes can also

indicate similarity and has better performance (Kruegel et

al. 2006).

Our research differs from previous flowgraph

classification research by using a novel approximate

control flow graph matching algorithm. Except for

Krueger et al., the classification systems in previous

research measure similarity in the callgraph and control

flow graphs, where as our work relies entirely on the

control flow graphs. Also distinguishing our work is the

proposed automated unpacking system, which is

integrated into the flowgraph based classification system.

3 Problem Definition and Our Approach

The problem of malware classification and variant

detection is defined in this section. Additionally, an

overview of our approach to design and implement a

malware classification system is presented.

3.1 Problem Definition

A malware classification system is assumed to have

advance access to a set of known malware. This is for

construction of an initial malware database. The database

is constructed by identifying invariant characteristics in

each malware and generating an associated signature to

be stored in the database. After database initialization,

normal use of the system commences. The system has as

CRPIT Volume 107 - Parallel and Distributed Computing 2010

62

3

input a previously unknown binary that is to be classified

as being malicious or non malicious. The input binary and

the initial malware binaries may have additionally

undergone a code packing transformation to hinder static

analysis. The classifier calculates similarities between

the input binary against each malware in the database.

The similarity is measured as a real number between 0

and 1 - 0 indicating not at all similar, 1 indicating an

identical match. This similarity is a based on the

similarity between malware characteristics in the

database. If the similarity exceeds a given threshold for

any malware in the database, then the input binary is

deemed a variant of that malware, and therefore

malicious. If identified as a variant, the database may be

updated to incorporate the potentially new set of

generated signatures associated with that variant.

3.2 Our Approach

Our approach employs both dynamic and static analysis

to classify malware. Entropy analysis initially determines

if the binary has undergone a code packing

transformation. If packed, dynamic analysis employing

application level emulation reveals the hidden code using

entropy analysis to detect when unpacking is complete.

Static analysis then identifies characteristics, building

signatures for control flow graphs using the novel

application of structuring. Structuring is the process of

decompiling unstructured control flow into higher level,

source code like, constructs including structured

conditions and iteration. Each signature representing the

structured control flow is represented as a string. These

signatures are then used for querying the database of

known malware using an approximate dictionary search.

Using the edit distance for approximate matches between

each flowgraph, a similarity between flowgraphs can be

constructed. The similarity of each control flowgraph in

the program is accumulated to construct the final measure

of program similarity and variant identification.

4 System Design and Implementation

In this section, the design and implementation of the

malware classification system prototype is examined.

4.1 Identifying Packed Binaries Using Entropy

Analysis

The malware classification system performs an initial

analysis on the input binary to determine if it has

undergone a code packing transformation. Entropy

analysis (Lyda and Hamrock 2007), is used to identify

packed binaries. The entropy of a block of data describes

the amount of information it contains. It is calculated as

follows:

𝐻 𝑥 = −
𝑝 𝑖 = 0, 0

𝑝 𝑖 ≠ 0, 𝑝 𝑖 𝑙𝑜𝑔2𝑝(𝑖)

𝑁

𝑖=1

where p(i) is the probability of the i
th

 unit of information

in event x’s sequence of N symbols. For malware packing

analysis, the unit of information is a byte value, N is 256,

and an event is a block of data from the malware.

Compressed and encrypted data have relatively high

entropy. Program code and data have much lower

entropy. Packed data is typically characterised as being

encrypted or compressed, therefore high entropy in the

malware can indicate packing.

An analysis most similar to Uncover (Wu et al. 2009)

is employed. Identification of packed malware is

established if there exists sequential blocks of high

entropy data in the input binary.

If the binary is identified as being packed, then the

dynamic analysis to perform automated unpacking

proceeds. If the binary is not packed, then the static

analysis commences immediately.

4.2 Application Level Emulation

Automated unpacking requires malware execution to be

simulated so that the malware may reveal its hidden code.

The hidden code once revealed is then extracted from the

process image.

Application level emulation provides an alternate

approach to whole system emulation for automated

unpacking. Application level emulation simulates the

instruction set architecture and system call interface. In

the Windows OS, the officially supported system call

interface is the Windows API.

4.2.1 Interpretation
The prototype emulator utilises interpretation to

perform simulation. The features of the prototype are

described in this section.

x86 Instruction Set Architecture (ISA): Much of

the 32-bit x86 ISA has been implemented in the

prototype. Extensions to the ISA, including SSE and

MMX instructions, have been partially implemented. A

partial implementation is adequate for the prototype as

the majority of programs do not employ full use of the

ISA. FPU, SSE, and MMX instructions are primarily

used by malware to evade or detect emulation. Malware

may also use the debugging interface component of the

ISA, including debug registers and the trap flag, which

are primarily used to obfuscate control flow.

Virtual Memory: x86 employs a segmented memory

architecture. The Windows OS utilises these segment

registers to reference thread specific data. Thread specific

data is additionally used by Windows Structured

Exception Handling (SEH). SEH is used to gracefully

handle abnormal conditions such as division by zero and

is routinely used by packers and malware to obfuscate

control flow.

Segmented memory is handled in our prototype by

maintaining a table of segment descriptions, known in the

x86 ISA as the descriptor table. Addressed memory is

associated with a segment, known in the ISA as segment

selectors, which hold an index into the descriptor table.

This enables a translation from segmented addressing to a

flat linear addressing.

Virtual memory is maintained by a table of memory

regions referenced by their linear address. Each memory

region maintains its associated memory contents. Each

region also maintains a shadow memory that is utilised by

the automated unpacking logic. The shadow memory

maintains a flag for each address that is set if that location

has been written to or of it has been read.

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

63

4

Win32

Executable

Packed? Structure ClassifyYes Yes

Malware

Database

Non

Malicious
Malicious

New

Signature

No

Dynamic Analysis

Emulate
End of

Unpacking?

No

Figure 1: Block diagram of the malware classification system.

Windows API: The Windows API is the official

system call interface provided by Windows. Our

prototype system detects calls to the Windows API by

inspecting the simulated program counter. If the program

counter contains the address of a Windows API function,

then a handler implementing the functionality of the API

is executed.

There are too many windows API functions to fully

emulate, so only the most common APIs are

implemented. Commonly used APIs include heap

management, object management, and file system

management.

Linking and Loading: Program loading entails

allocating the appropriate virtual memory, loading the

program text, data and dynamic libraries and performing

any required relocations. OS specific structures and

machine state must also be initialized.

The exported functions of a dynamically linked library

may be entirely simulated without having access to the

native library. Such a system may have benefit when the

emulator is cross platform and licensing issues should be

avoided. Our implementation performs full dynamic

library loading using the native libraries. This is done to

provide a more faithful simulation.

Thread and Process Management: Multithreading

in applications must be emulated. The prototype

implements this using user-level threads - only one

thread is running on the host at any particular time and

each thread is rescheduled after a specific number of

instructions.

Support for emulating multiple processes was not

implemented.

OS specific structures: Windows has process and

thread specific structures that require initialization such

as the Process Environment Block, Thread Environment

Block, and Loader Module. These structures are visible to

applications and can be used by malware.

4.2.2 Improvements to Emulation

A naive implementation of emulation can result in poor

simulation speed. We make a number of improvements to

the prototype as follows. We also make additional

improvements to enable a mechanism to address anti-

emulation code used by malware.

Instruction predecoding (Sharif et al.) is adopted and

produces a significant gain in simulation speed. In this

technique, the decoding of unique instructions is cached.

This results in a performance gain because disassembly in

a naive emulator consumes a large amount of processor

time. Predecoding can also be used to cache a function

pointer directly to the opcode handler. When used in this

way, predecoding allows for fast implementation of the

x86 debugging ISA including hardware breakpoints and

single step execution used by debuggers. In this

optimisation, the cache holding a function pointer to the

opcode handler is modified on-demand to reflect that it

should execute the breakpoint or trap logic. This removes

explicit checks for these conditions from the emulator's

main loop.

Condition Codes: The x86 condition codes are

another point of optimisation and the prototype defers to

lazy evaluation of these at the time of their use, similar to

QEMU (Bellard 2005).

Emulating Known Sections of Code: Many

instances of malware use modified variants of the same

packer or share similar code between different packers.

Taking advantage of this, it is possible to detect known

sections of code during emulation and handle them more

specifically, and therefore more efficiently than

interpretation (Babar et al. 2009). To implement this it is

noted that each stage during unpacking gives access to a

layer of hidden code that has been revealed, and the

memory in each layer can be searched for sections of

known code. These sections of code can then be

emulated, in whole, using custom handlers. This approach

achieves significantly greater performance than

interpreting each individual instruction. Typical code

sections to have written handlers include decryption

loops, decompression loops and checksum calculations.

Handlers can also be written and used to dynamically

remove specific anti-emulation code.

The prototype implements handlers for frequently used

loops in several well known packers.

4.2.3 Verification of Emulation

An automated approach to testing the correctness of

emulation is implemented similar to that of testing whole

system emulation (Martignoni et al. 2009). To achieve

this, the program being emulated is executed in parallel

CRPIT Volume 107 - Parallel and Distributed Computing 2010

64

5

on the host machine. The host program is monitored

using the Windows debugging API. At the

commencement of each instruction, the emulator machine

state is compared against the host version and examined

for deviant behaviour. This allows the detection of

unfaithful simulation.

Faithful emulation is made more difficult, as some

instructions and Windows API functions behave

differently when debugged. The prototype debugger was

modified to rewrite these instructions and functions to

emit behaviour consistent to that in a non debugged

environment. This enabled testing of packers and

malware that employ known techniques to detect and

evade debugging.

4.3 Entropy Analysis to Detect Completion of

Hidden Code Extraction

Detection of the original entry point (OEP) during

emulation identifies the point at which the hidden code is

revealed and execution of the original unpacked code

begins to take place. Detecting the execution of dynamic

code generation by tracking memory writes was used as

an estimation of the original entry point in Renovo (Kang

et al. 2007). In this approach the emulator executes the

malware, and a shadow memory is maintained to track

newly written memory. If any newly written memory is

executed, then the hidden code in the packed binary being

executed will be revealed. To complicate this approach,

multiple layers or stages of hidden code may be present,

and malware may be packed more than once. This

scenario is handled by clearing the shadow memory

contents, continuing emulation, and repeating the

monitoring process until a timeout expires.

The malware classification prototype extends the

concept of identifying the original entry point when

unpacking multiple stages by identifying more precisely

at which stage to terminate the process, without relying

on a timeout. The intuition behind our approach is that if

there exists high entropy packed data that has not been

used by the packer during execution, then it remains to be

unpacked. To determine if a particular stage of unpacking

represents the original entry point, the entropy of new or

unread memory in the process image is examined. Newly

written memory is indicated by the shadow memory for

the current stage being unpacked. Unread memory is

maintained globally, in a shadow memory for all stages.

If the entropy of the analysed data is low, then it is

presumed that no more compressed or encrypted data is

left to be unpacked. This heuristically indicates

completion of unpacking. The prototype also performs

the described entropy analysis to detect unpacking

completion after a Windows API imposes a significant

change to the entropy. This is commonly seen when the

packer deallocates large amounts of memory during

unpacking. In the remaining case that the original entry

point is not identified at any point, an attempt in the

emulation to execute an unimplemented Windows API

function will have the same effect as having identified the

original entry point at this location.

4.4 Flowgraph Based Signature Generation

The static analysis component of the malware

classification system proceeds once it receives an

unpacked binary. The analysis is used to extract

characteristics from the input binary that can be used for

classification. The characteristic for each procedure in the

input binary is obtained from structuring its control flow

into compact representation that is amenable to string

matching.

To initiate the static analysis process, the memory

image of the binary is disassembled using speculative

disassembly (Kruegel et al. 2004). Procedures are

identified during this stage. A heuristic is used to

eliminate incorrectly identified procedures during

speculation of disassembly - the target of a call

instruction identifies a procedure, only if the callsite

belongs to an existing procedure. Once disassembled the

disassembly is translated into an intermediate

representation. Using an intermediate representation is

not strictly necessary; however the malware classification

prototype is built on a more general binary analysis

platform which uses the intermediate form. The

intermediate representation is used to generate a control

flow graph for each identified procedure. The control

flow graph is then structured into a signature represented

as a character string. The signature is also associated with

a weight relative to all sum of all weighted signatures in

the program. The weight of procedure x is formally

defined as:

𝑤𝑒𝑖𝑔ℎ𝑡𝑥 =
len(𝑠𝑥)

 𝑙𝑒𝑛(𝑖 𝑠𝑖)

where si is signature of procedure i in the binary.

4.4.1 Signatures using Structured Control

Flow for Approximate Matches
Malware classification using approximate matches of

signatures can be performed, and intuitively, using

approximate matches of a control flow graph should

enable identification a greater number of malware

variants. In our approach we use structuring. Structuring

is the process of recovering high level structured control

flow from a control flow graph. In our system, the control

flow graphs in a binary are structured to produce

signatures that are amenable to comparison and

approximate matching using edit distances.

The intuition behind using structuring as a signature is

that similarities between malware variants are reflected

by variants sharing similar high level structured control

flow. If the source code of the variant is a modified

version of the original malware, then this intuition would

appear to hold true.

 The structuring algorithm implemented in the

prototype is a modified algorithm of that proposed in the

DCC decompiler (Cifuentes 1994). If the algorithm

cannot structure the control flow graph then an

unstructured branch is generated. Surprisingly, even when

graphs are reducible (a measure of how inherently

structured the graph is), the algorithm generates

unstructured branches in a small but not insignificant

number of cases. Further improvements to this algorithm

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

65

6

to reduce the generation of unstructured branches have

been proposed (Moretti et al. 2001, Wei et al. 2007),

however these improvements were not implemented.

The result of structuring is output consisting of a string

of character tokens representing high level structured

constructs that are typical in a structured programming

language. Subfunction calls are represented, as are gotos,

however the goto and subfunction targets are ignored.

The grammar for a resulting signature is defined in figure

3.

Figure 2: The relationship between a control flow

graph, a high level structured graph, and a signature.

Figure 3: The grammar to represent a structured

control flow graph signature.

4.5 Malware Classification

To classify an input binary, the analysis makes use of a

malware database. The database contains the signatures,

represented as structured graphs, of known malware. For

each procedure in the input binary, the database is queried

using an approximate dictionary search. The results are

accumulated to give a measure of similarity between the

input binary and malware in the database.

The analysis performs more accurately with a greater

number of procedures and hence signatures. If the input

binary has too few procedures, then classification cannot

be performed. The prototype does not perform

classification on binaries with less than 10 procedures.

To perform the approximate dictionary search, any

signature within an allowable number of errors is

identified as a positive match. The edit distance between

signatures gives the number of errors, and the search is

performed using BK Trees (Baeza-Yates and Navarro

1998). The search algorithm is faster than an exhaustive

comparison of each signature in the dictionary. In our

prototype, we maintain a separate database for each

malware instance and perform classification against all

instances one at a time. This has resulted in greater

performance than using a global database of all malware.

The similarity ratio (Gheorghescu 2005) was proposed

to measure the similarity between basic blocks. It is used

in our research to establish the number of allowable

errors between flowgraph signatures in a dictionary

search. For two signatures or structured graphs

represented as strings x and y, the similarity ratio is

defined as:

𝑤𝑒𝑑 = 1 −
𝑒𝑑(𝑥, 𝑦)

max(𝑙𝑒𝑛 𝑥 , 𝑙𝑒𝑛 𝑦)

where ed(x,y) is the edit distance. Our prototype defines

the edit distance as the Levenshtein distance – the number

of insertions, deletions, and substitutions to convert one

string to another. Signatures that have a similarity ratio

equal or exceeding a threshold t (t=0.9) are identified as

positive matches. This figure was derived empirically

through a pilot study. Using the similarity ratio s as a

threshold, the number of allowable errors in signature x is

defined as 𝑙𝑒𝑛 𝑥 1 − 𝑠 .
For a particular malware, once a matching graph is

found, this graph is ignored for subsequent searches of

the remaining graphs in the input binary. If a graph has

multiple matches in a particular malware and it is

uncertain which procedure should be selected as a match,

the greedy solution is taken. The graph that is weighted

the most is selected. Two weights are possible for each

procedure from the input binary during dictionary

queries, as the procedure may be considered belonging to

either the input binary, or the malware binary in the

database.

For each malware that has matching signatures, the

similarity ratios of those signatures are accumulated

proportional to their weights. As two weights are

possible, this results in calculating two asymmetric

similarities: a similarity that identifies how much of the

input binary is approximately found in the database

malware, and a similarity to show how much of the

database malware is approximately found in the input

binary. Formally, the asymmetric similarity is:

𝑆𝑥 =
0, 𝑤𝑒𝑑 𝑖

< 𝑡

𝑤𝑒𝑑 𝑖
𝑤𝑒𝑖𝑔ℎ𝑡𝑥𝑖 , 𝑤𝑒𝑑 𝑖

≥ 𝑡

𝑖

where t is the empirical threshold value of 0.9, 𝑤𝑒𝑑 𝑖
 is

the similarity ratio between the i
th

 control flow graph of

Procedure ::= StatementList

StatementList ::= Statement | Statement StatementList

Statement ::= Return | Break | Continue | Goto

| Conditional | Loop | BasicBlock

Goto ::= 'G'

Return ::= 'R'

Break ::= 'B'

Continue ::= 'C'

BasicBlock ::= 'B' | 'B' SubRoutineList

SubRoutineList ::= 'S' | 'S' SubRoutineList

Condition ::= | ConditionTerm

| ConditionTerm NextConditionTerm

NextConditionTerm ::= '!' Condition | Condition

ConditionTerm ::= '&' | '|'

IfThenCondition ::= Condition | '!' Condition

Conditional ::= IfThen | IfThenElse

IfThen ::= 'I' IfThenCondition '{' StatementList '}'

IfThenElse ::= 'I' Condition '{' StatementList ‘}’

‘E’ ‘{‘ StatementList '}'

Loop ::= PreTestedLoop | PostTestedLoop

| EndlessLoop

PreTestedLoop ::= 'W' Condition '{' StatementList '}'

PostTestedLoop ::= 'D' '{' StatementList '}' Condition

EndlessLoop ::= 'F' '{' StatementList '}'

L_0

L_3

L_6

L_7L_1

L_2 L_4

L_5

true

true

true

true

true

BW|{BI{B}E{B}B}BR

proc(){

L_0:

 while (v1 || v2) {

L_1:

 if (v3) {

L_2:

 } else {

L_4:

 }

L_5:

 }

L_7:

 return;

}

CRPIT Volume 107 - Parallel and Distributed Computing 2010

66

7

the input binary and the matching graph in the malware

database, and 𝑤𝑒𝑖𝑔ℎ𝑡𝑥𝑖 is the weight of the cfg where x is

either the input binary or the malware binary in the

database.

The program similarity is the final measure of

similarity used for classification and is the product of the

asymmetric similarities. The program similarity is

defined as:

𝑆(𝑖, 𝑑) = 𝑆𝑖𝑆𝑑

where i is the input binary, d is the database malware

instance, Si and Sd are the asymmetric symmetries.

Program similarity is not symmetric and therefore

S(i,d) and S(d,i) are not guaranteed the same result,

although in practice they are generally identical. This

difference is due to the use of heuristics, as a control flow

graph signature can potentially be found to have multiple

matches when calculating the similarity between two

binaries. The heuristic used is to select a single signature.

A greedy selection is taken, based on the weights of the

matching signatures. In S(i,d), the input binary defines the

weights used in the greedy selection. Alternatively, in

S(d,i), the database malware defines the weights which

will be used. Because the weights and therefore greedily

selected signatures can be different, the resulting program

similarities may be different.

If the program similarity of the examined program to

any malware in the database equals or exceeds a

threshold of 0.6, then it is deemed to be a variant. As the

database contains only malicious software, the binary of

unknown status is also deemed malicious. The threshold

of 0.6 was chosen empirically through a pilot study. If the

binary is identified as malicious, and not deemed as

excessively similar to an existing malware in the

database, the new set of malware signatures can be stored

in the database as part of an automatic system.

4.6 Discussion

It is possible to generate a signature using a faster and

simpler method than structuring (Carrera and Erdélyi

2004). This approach takes note that if the signatures of

two graphs are not the same, then the graphs are not

isomorphic. The converse is used to indicate matching

graphs. To generate a signature, the algorithm orders the

nodes in the control flow graph, e.g. using a depth first

order. A signature subsequently consists of a list of graph

edges using the ordered nodes as node labels. The

potential advantage of this method is that classification

using exact matches of signatures can be performed very

efficiently.

Another potential design change is using an alternative

method to establish the program similarity. It may be

desirable to identify only that malware is approximately

found as a subset in another binary, in which case a single

asymmetric similarity may be used. This has use in virus

detection.

Automated unpacking can potentially be thwarted to

result in malware that cannot be unpacked. Application

level emulation presents inherent deficiencies when

implemented to emulate the Windows operating system.

The Windows API is a large set of APIs that requires

significant effort to faithfully emulate. Complete

emulation of the API has not been achieved in the

prototype and faithful emulation of undocumented side

effects may be near impossible. Malware that

circumvents usual calling mechanisms and malware that

employs the use of uncommon APIs may result in

incomplete emulation. Malware is reportedly more

frequently using the technique of uncommon APIs to

evade Antivirus emulation.

An alternative approach is to emulate the Native API

which is used by the Windows API implementation.

However, the only complete and official documentation

for system call interfaces is the Windows API. The

Windows API is a library interface, but malware may

employ the use of the Native API to interface directly

with the kernel. There does exist reported malware that

employ the Native API to evade Antivirus software.

 Another problem that exists is early termination of

unpacking due to time constraints. Due to real-time

constraints of desktop Antivirus, unpacking may be

terminated if too much time is consumed during

emulation. Malware may employ the use of code which

purposely consumes time for the purpose of causing early

termination of unpacking. Dynamic binary translation

may provide some relief through faster emulation.

Additionally, individual cases of anti-emulation code may

be treated using custom handlers to perform the

simulation where anti-emulation code is detected.

Application level emulation performs optimally

against variations of known packers, or unknown packers

that do not introduce significantly novel anti-emulation

techniques. Many newly discovered malware fulfil these

criteria.

Malware classification has inherent problems also, and

may fail to perform correctly. Performing static

disassembly, identifying procedures and generating

control flow graphs is, in the general case, undecidable.

Malware may specifically craft itself to make static

analysis hard. In practice, the majority of malware is

compiled from a high level language and obfuscated as a

post-processing stage. The primary method of

obfuscation is the code packing transformation. Due to

these considerations, static analysis generally performs

well in practice.

5 Evaluation

In this section we describe experiments that were used to

evaluate automated unpacking and flowgraph based

classification using our prototype.

5.1 Unpacking Synthetic Samples
OEP Detection: To verify our system correctly

performs hidden code extraction, we tested the prototype

against 14 public packing tools. These tools perform

various techniques in the resulting code packing

transformation including compression, encryption, code

obfuscation, debugger detection and virtual machine

detection. The samples chosen to undergo the packing

transformation were the Microsoft Windows XP system

binaries hostname.exe and calc.exe. hostname.exe is 7680

bytes in size, and calc.exe is 114688 bytes.

The original entry point identified by the unpacking

system was compared against what was identified as the

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

67

8

real OEP. To identify the real OEP, the program counter

was inspected during emulation and the memory at that

location examined. If the program counter was found to

have the same entry point as the original binary, and the

10 bytes of memory at that location the same as the

original binary, then that address was designated the real

OEP.

The results of the OEP detection evaluation are in

table 1. The revealed code column in the tabulated results

identifies the size of the dynamically generated code and

data. The number of unpacking stages to reach the real

OEP is also tabulated, as is the number of stages actually

unpacked using entropy based OEP detection. Finally, the

percentage of instructions that were unpacked, compared

to the number of instructions that were executed to reach

the real OEP is also shown. This last metric is not a

definitive metric by itself, as the result of the unaccounted

for instructions may not affect the revelation of hidden

code – the instructions could be only used for debugger

evasion for example. Entries where the OEP was not

identified are marked with err. Binaries that failed to pack

correctly are marked as fail. The closer the results in

column 3 and 4 the better. The higher the result in column

5 the better.

Name Revealed

code and
data

Number of
stages to
real OEP

 Stages
unpacked

 % of instr.
to real OEP

unpacked

upx 13107 1 1 100.00

rlpack 6947 1 1 100.00

mew 4808 1 1 100.00

fsg 12348 1 1 100.00

npack 10890 1 1 100.00

expressor 59212 1 1 100.00

packman 10313 2 1 99.99

pe compact 18039 4 3 99.98

acprotect 99900 46 39 98.81

winupack 41250 2 1 98.80

telock 3177 19 15 93.45

yoda's protector 3492 6 2 85.81

aspack 2453 6 1 43.41

pepsin err 23 err err

hostname.exe

Name Revealed
code and

data

Number of
stages to
real OEP

 Stages
unpacked

 % of instr.
to real

OEP
unpacked

upx 125308 1 1 100.00

rlpack 114395 1 1 100.00

mew 152822 2 2 100.00

fsg 122936 1 1 100.00

npack 169581 1 1 100.00

expressor fail fail fail fail

packman 188657 2 1 99.99

pe compact 145239 4 3 99.99

acprotect 251152 209 159 96.51

winupack 143477 2 1 95.84

telock fail fail fail fail

yoda's protector 112673 6 3 95.82

aspack 227751 4 2 99.90

pespin err 23 err err

calc.exe

Table 1: Metrics on identifying the original entry

point in packed samples.

The results show that unpacking most of the samples

reveals some or most of the hidden code as expected. The

OEP of pespin was not identified, possibly due to unused

encrypted data remaining in the process image, which

would raise the entropy and affect the heuristic OEP

detection. The OEP in the packed calc.exe samples was

more accurately identified, relative to the metrics, than in

the hostname.exe samples. This may be due to fixed size

stages during unpacking that were not executed due to

incorrect OEP detection. Interestingly, in many cases, the

revealed code was greater than the size of the original

unpacked sample. This is because the metric for hidden

code is all the code and data that is dynamically

generated. Use of the heap, and the dynamic generation

of internally used hidden code will increase the resultant

amount.

 The worst result was in hostname.exe using aspack. 43%

of the instructions to the real OEP were not executed, yet

nearly 2.5K of hidden of code and data was revealed,

which is around a third of the original sample size. While

some of this may be heap usage and the result not ideal, it

may still potentially result in enough revealed procedures

to use for the classification system in the static analysis

phase.

Performance: The system used to evaluate the

performance of the unpacking prototype was a modern

desktop - a 2.4 GHz Quad core computer, with 4G of

memory, running 32bit Windows Vista Home Premium

with Service Pack 1. The performance of the unpacking

system, shown in table 2. The running time is total time

minus start-up time of 0.60s. Binaries that failed to pack

correctly are marked as fail.

Name Time (s) Num. Instr.

mew 0.13 56042
fsg 0.13 58138
upx 0.11 61654
packman 0.13 123959
npack 0.14 129021
aspack 0.15 161183
pe compact 0.14 179664
expressor 0.20 620932
winupack 0.20 632056
yoda’s protector 0.15 659401
rlpack 0.18 916590
telock 0.20 1304163
acprotect 0.67 3347105
pespin 0.64 10482466

hostname.exe

Name Time (s) Num. Instr.

mew 1.21 12691633
fsg 0.23 964168
upx 0.19 1008720
packman 0.28 1999109
npack 0.40 2604589
aspack 0.51 4078540
pe compact 0.83 7691741
expressor fail fail
winupack 0.93 7889344
yoda’s protector 0.24 2620100
rlpack 0.56 7632460
telock fail fail
acprotect 0.53 5364283
pespin 1.60 27583453

calc.exe

Table 2: Running time to perform unpacking.

CRPIT Volume 107 - Parallel and Distributed Computing 2010

68

9

The results demonstrate the system is fast enough for

integration into a desktop anti-malware system. In this

evaluation full interpretation of every instruction is

performed.

5.2 Flowgraph Based Malware Classification
The malware classification prototype was evaluated

using real malware samples. The samples were chosen to

mimic a selection of the malware and evaluation metrics

in previous research (Carrera and Erdélyi 2004). Netsky,

Klez, and Roron malware variants were obtained through

public databases. A number of the malware samples were

packed. The classification system automatically identifies

and unpacks such malware as necessary. Table 3

evaluates the complete system. Highlighted cells identify

a malware variant, defined as having a similarity equal or

exceeding 0.60. A flowgraph is classed as being a variant

of another flowgraph if the similarity ratio is equal or in

excess of 0.9.

a b c d g h

a 0.84 1.00 0.76 0.47 0.47
b 0.84

0.84 0.87 0.46 0.46

c 1.00 0.84

0.76 0.47 0.47
d 0.76 0.87 0.76

0.46 0.45

g 0.47 0.46 0.47 0.46

0.83
h 0.47 0.46 0.47 0.45 0.83

The Klez family of malware.

aa ac f j p t x y

aa

0.78 0.61 0.70 0.47 0.67 0.44 0.81
ac 0.78

0.66 0.75 0.41 0.53 0.35 0.64

f 0.61 0.66

0.86 0.46 0.59 0.39 0.72
j 0.70 0.75 0.86

0.52 0.67 0.44 0.83

p 0.47 0.41 0.46 0.52

0.61 0.79 0.56
t 0.67 0.53 0.59 0.67 0.61

0.61 0.79

x 0.44 0.35 0.39 0.44 0.79 0.61

0.49
y 0.81 0.64 0.72 0.83 0.56 0.79 0.49

The Netsky family of malware.

Table 3: The similarity matrix for two malware

families (e.g. Klez.a).

ao b d e g k m q a

ao 0.41 0.27 0.27 0.27 0.46 0.41 0.41 0.44
b 0.41

0.27 0.26 0.27 0.48 1.00 1.00 0.56

d 0.27 0.27

0.44 0.50 0.27 0.27 0.27 0.27
e 0.27 0.26 0.44

0.56 0.26 0.26 0.26 0.26

g 0.27 0.27 0.50 0.56

0.26 0.27 0.27 0.26
k 0.46 0.48 0.27 0.26 0.26

0.48 0.48 0.73

m 0.41 1.00 0.27 0.26 0.27 0.48

1.00 0.56
q 0.41 1.00 0.27 0.26 0.27 0.48 1.00

0.56

a 0.44 0.56 0.27 0.26 0.26 0.73 0.56 0.56

Similarity ratio threshold of 1.0.

ao b d e g k m q a

ao 0.70 0.28 0.28 0.27 0.75 0.70 0.70 0.75
b 0.74

0.31 0.34 0.33 0.82 1.00 1.00 0.87

d 0.28 0.29

0.50 0.74 0.29 0.29 0.29 0.29
e 0.31 0.34 0.50

0.64 0.32 0.34 0.34 0.33

g 0.27 0.33 0.74 0.64

0.29 0.33 0.33 0.30
k 0.75 0.82 0.29 0.30 0.29

0.82 0.82 0.96

m 0.74 1.00 0.31 0.34 0.33 0.82

1.00 0.87
q 0.74 1.00 0.31 0.34 0.33 0.82 1.00

0.87

a 0.75 0.87 0.30 0.31 0.30 0.96 0.87 0.87

Default similarity ratio threshold of 0.9.

Table 4: The similarity matrices for the Roron family

of malware (e.g. Roron.ao).

cmd.exe calc.exe netsky.aa klez.a roron.ao

cmd.exe 0.00 0.00 0.00 0.00
calc.exe 0.00

0.00 0.00 0.00

netsky.aa 0.00 0.00

0.19 0.08
klez.a 0.00 0.00 0.19

0.15

roron.ao 0.00 0.00 0.08 0.15

Table 5: The similarity matrix for non similar

malware and programs.

The results demonstrate that the system finds high

similarities between samples. Table 4 shows the

difference in the similarity matrix when the threshold for

the similarity ratio is increased to 1.0. Differences

between 5% and 30% were noted across the variety of

malware variants using the two similarity ratio thresholds.

To evaluate the generation of false positives in the

classification system table 5 shows classification among

non similar binaries. Table 6 shows a more thorough

evaluation of false positive generation by comparing each

executable binary to every other binary in the Windows

Vista system directory. The histogram groups binaries

that shares similarity in buckets grouped in intervals of

0.1. There results show there exist similarities between

some of the binaries, but for the majority of comparisons

the similarity is less than 0.1. This seems a reasonable

result as most binaries will be unrelated.

Similarity Matches

0.0 105497

0.1 2268

0.2 637

0.3 342

0.4 199

0.5 121

0.6 44

0.7 72

0.8 24

0.9 20

1.0 6

Table 6: Histogram of similarities between

executable files in Windows system directory.

6 Conclusion

Malware can be classified according to similarity in its

flowgraphs. This analysis is made more challenging by

packed malware. In this paper we proposed fast

algorithms to unpack malware using application level

emulation, and perform malware classification using the

edit distance between structured control flow graphs. We

implemented and evaluated a prototype. It was

demonstrated that the automated unpacking system was

fast enough for desktop integration. The automated

unpacking was also demonstrated to work against a

promising number of synthetic samples using known

packing tools, with high speed. To detect the completion

of unpacking, we proposed and evaluated the use of

entropy analysis. It is shown that our system can

successfully identify variants of malware.

7 References

Babar, K., Khalid, F. & Pakistan, P. (2009): Generic

Unpacking Techniques. International

Conference On Computer, Control and

Communication.

Baeza-Yates, R. & Navarro, G. (1998): Fast approximate

string matching in a dictionary. South American

Symposium on String Processing and

Information Retrieval (SPIR'98), 14-22.

Bellard, F. (2005): QEMU, a fast and portable dynamic

translator. USENIX Annual Technical

Conference, 41–46.

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

69

10

Boehne, L. (2008): Pandora’s Bochs: Automatic

Unpacking of Malware. University of

Mannheim.

Briones, I. & Gomez, A. (2008): Graphs, Entropy and

Grid Computing: Automatic Comparison of

Malware. Virus Bulletin Conference, 1-12.

Carrera, E. & Erdélyi, G. (2004): Digital genome

mapping–advanced binary malware analysis.

Virus Bulletin Conference, 187-197.

Cifuentes, C. (1994): Reverse compilation techniques.

Queensland University of Technology.

Dinaburg, A., Royal, P., Sharif, M. & Lee, W. (2008):

Ether: Malware analysis via hardware

virtualization extensions. Proceedings of the

15th ACM conference on Computer and

communications security, 51-62, ACM New

York, NY, USA.

Dullien, T. & Rolles, R. (2005): Graph-based comparison

of Executable Objects (English Version).

SSTIC.

Gao, D., Reiter, M. K. & Song, D. (2008): Binhunt:

Automatically finding semantic differences in

binary programs. Information and

Communications Security, 5308:238–255,

Springer.

Gheorghescu, M. (2005): An automated virus

classification system. Virus Bulletin

Conference, 294-300.

Graf, T. (2005): Generic unpacking: How to handle

modified or unknown PE compression engines.

Virus Bulletin Conference.

Kang, M. G., Poosankam, P. & Yin, H. (2007): Renovo:

A hidden code extractor for packed executables.

Workshop on Recurring Malcode, 46-53.

Karim, M. E., Walenstein, A., Lakhotia, A. & Parida, L.

(2005) Malware phylogeny generation using

permutations of code. Journal in Computer

Virology, 1 (1):13-23.

Kolter, J. Z. & Maloof, M. A. (2004): Learning to detect

malicious executables in the wild. International

Conference on Knowledge Discovery and Data

Mining, 470-478.

Kruegel, C., Kirda, E., Mutz, D., Robertson, W. & Vigna,

G. (2006) Polymorphic worm detection using

structural information of executables. Lecture

notes in computer science, 3858:207.

Kruegel, C., Robertson, W., Valeur, F. & Vigna, G.

(2004): Static disassembly of obfuscated

binaries. USENIX Security Symposium, 13:18-

18.

Lyda, R. & Hamrock, J. (2007) Using entropy analysis to

find encrypted and packed malware. IEEE

Security and Privacy, 5 (2):40.

Martignoni, L., Christodorescu, M. & Jha, S. (2007):

Omniunpack: Fast, generic, and safe unpacking

of malware. Proceedings of the Annual

Computer Security Applications Conference

(ACSAC), 431-441.

Martignoni, L., Paleari, R., Roglia, G. F. & Bruschi, D.

(2009): Testing CPU emulators. Proceedings of

the eighteenth international symposium on

Software testing and analysis, Chicago, IL,

USA, 261-272, ACM.

Moretti, E., Chanteperdrix, G. & Osorio, A. (2001): New

algorithms for control-flow graph structuring.

Software Maintenance and Reengineering, 184.

Mal(ware)formation statistics - Panda Research Blog:

Panda Research,

http://research.pandasecurity.com/archive/Mal_2

800_ware_2900_formation-statistics.aspx. 19

August 2009.

Perdisci, R., Lanzi, A. & Lee, W. (2008): McBoost:

Boosting Scalability in Malware Collection and

Analysis Using Statistical Classification of

Executables. Proceedings of the 2008 Annual

Computer Security Applications Conference,

301-310, IEEE Computer Society Washington,

DC, USA.

Quist, D. & Valsmith (2007): Covert Debugging

Circumventing Software Armoring Techniques.

Black Hat Briefings USA.

Royal, P., Halpin, M., Dagon, D., Edmonds, R. & Lee,

W. (2006): Polyunpack: Automating the hidden-

code extraction of unpack-executing malware.

Computer Security Applications Conference,

289-300.

Sharif, M., Lanzi, A., Giffin, J. & Lee, W. Rotalume: A

Tool for Automatic Reverse Engineering of

Malware Emulators. INC., I. G.

Stepan, A. (2006): Improving proactive detection of

packed malware. Virus Bulletin Conference, 1.

Sun, L., Ebringer, T. & Boztas, S. (2008): Hump-and-

dump: efficient generic unpacking using an

ordered address execution histogram.

International Computer Anti-Virus Researchers

Organization (CARO) Workshop.

Wei, T., Mao, J., Zou, W. & Chen, Y. (2007): Structuring

2-way branches in binary executables.

International Computer Software and

Applications Conference, 01: 115-118.

Wu, Y., Chiueh, T. & Zhao, C. (2009): Efficient and

Automatic Instrumentation for Packed Binaries.

International Conference and Workshops on

Advances in Information Security and

Assurance, 307-316.

VxClass: Zynamics,

http://www.zynamics.com/vxclass.html.

CRPIT Volume 107 - Parallel and Distributed Computing 2010

70

http://research.pandasecurity.com/archive/Mal_2800_ware_2900_formation-statistics.aspx
http://research.pandasecurity.com/archive/Mal_2800_ware_2900_formation-statistics.aspx
http://www.zynamics.com/vxclass.html

Lazy Evaluation of PDE Coefficients in the EScript System

Joel Fenwick Lutz Gross

Earth Systems Science Computational Centre (ESSCC),
The University of Queensland,
St Lucia, QLD 4072, Australia.
Email: JoelFenwick@uq.edu.au

Abstract

EScript is an extension to Python for solving partial
differential equations on parallel computers. It is par-
allelised for both MPI and shared memory, multi-core
systems using OpenMP. In this paper, we discuss lazy
evaluation as a strategy to reduce the cost of evaluat-
ing the coefficients of PDEs prior to solving. We show
that our implementation provides significant memory
and time savings for a problem involving complex ex-
pressions.

1 Introduction

EScript is a Python extension for solving general
linear, steady state, second order partial differential
equations (PDEs) (Gross et al. 2007). It supports
parallel execution for OpenMP, MPI or both (source
code is available on launchpad (lpe 2009)). The goal
of escript is to provide users, who are primarily mod-
ellers, with a means to construct and run simulations
on parallel computers without needing expertise in
parallel programming or lower level languages such
as C++. With this in mind, the work described in
this paper had three competing objectives:

1. reduced run time.

2. reduced peak memory usage.

3. minimal disruption to the existing interface and
minimal work on the part of users to apply new
features.

EScript and the simulations built upon it, contain
a significant amount of Python code. Any changes
we make, must be able to work in an interactive
(and interpreted) Python session if required. This in-
terpreted aspect, while making experimentation and
scripting easier for non-programmers, does impose
some constraints on the methods used to improve per-
formance. In particular, this limits techniques which
require preprocessing or precompilation of scripts.

To describe a PDE in escript , functions must be
constructed (or loaded) to form its coefficients. The
coefficients may depend on a PDE solution from a
previous iteration or timestep. They may also depend

This work is supported by the AuScope National Collaborative
Research Infrastructure Strategy by the Australian Common-
wealth, the Queensland State Government and The University
of Queensland.

Copyright c©2010, Australian Computer Society, Inc. This pa-
per appeared at the 8th Australasian Symposium on Parallel
and Distributed Computing (AusPDC 2010), Brisbane, Aus-
tralia.. Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 107, Jinjun Chen and Rajiv Ran-
jan, Ed. Reproduction for academic, not-for profit purposes
permitted provided this text is included.

on the solutions to a different PDE in the case of a
coupled problem. In this paper, we discuss the repre-
sentation and evaluation of these coefficient functions.

By default, functions are stored explicitly. That is,
the representation stores a number of floating point
values proportional to the complexity of the domain.
The more operations required to construct a func-
tion and the more complex the objects involved, the
greater the amount of memory required to store in-
termediate functions. As a very simple example, con-
sider the expression

y = ax+ b.

In order to evaluate y, an intermediate result

τ = ax

is required. If a and x are simple values then storing
τ won’t present much of a problem. If they are more
complex objects though, storing their product could
require non-trivial amounts of memory. Such inter-
mediate functions are typically not required once the
final function is computed. For large domains and in-
termediate functions involving tensors, this memory
cost can be significant. This can limit the problem
sizes which can be handled by the system. We inves-
tigate the use of lazy evaluation to reduce the burden
on the system. Lazy evaluation means that “argu-
ments to a function are evaluated only when needed
for computation”(Pandey 2008).

After a brief comment on OpenMP, we will dis-
cuss data representation followed by threading. Sec-
tion 5 contrasts evaluation in functional environments
to escript . Section 6 describes two implementations
of the resolve operation. Performance experiments
follow in Section 7.

2 OpenMP

The OpenMP (omp 2009a) model of shared-memory
parallelism uses a team of threads. Code executes
on a single master thread until it reaches a parallel
region. All threads in the team execute the section.
At the end of the section, execution continues on the
master thread (omp 2009b). In the case of escript ,
OpenMP is used primarily to parallelise for loops.

3 Representation

EScript can be compiled to use MPI, OpenMP or
both (hybrid mode). In the case of MPI, function
information is distributed among the MPI processes
at creation time and processed independently. There
may be an aggregation step at the end for opera-
tions such as integration. Since MPI does not present
threading issues, we will ignore it for the purposes of
this discussion.

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

71

Functions are represented in two parts (input and
output). The input to the function is determined by
a Domain object (a mesh) and a point selection strat-
egy (called a FunctionSpace in escript terminology).
For example, the values of the function could be de-
rived from the nodes bounding an element or from
the points in the interior. Storing this information is
the responsibility of the Domain object. Note that
escript itself does not impose any meaning on partic-
ular FunctionSpace IDs; these are determined by the
Domain in use.

Interpolation between different FunctionSpaces
(where possible), is performed by the Domain object.
Regardless of the FunctionSpace in use, the collection
of points representing an element is termed a sample.

It should be noted that while the ordering of sam-
ples and points must be consistent, escript does not
assume a global ordering of points.1

Data objects represent the values (outputs) of
functions and are linked to a particular Domain
and FunctionSpace. Values can be scalars (rank2 0)
through to 4-Tensors (rank 4) of various shapes.
Mathematical operations including basic arithmetic,
matrix operations and tensor products are defined on
Data objects. The majority of computation in escript
itself acts on Data objects and evaluating expressions
involving Data is the focus of this paper.

The final component is the solver. In the escript
distribution, the PDE is converted to a sparse matrix
representation and passed to the Paso sparse matrix
solver. This paper will not directly discuss the per-
formance of Paso either.

Operations on Data objects could be thought of as
batch operations in that the same operation is per-
formed on each value of the collection. Since the val-
ues in the Data object (function output) must corre-
spond to points in the Domain, it might be tempting
to view Data as an array. But this analogy breaks
down when the Domain is distributed across multiple
processes.

Internally, Data objects act as proxies for instances
of the DataAbstract class which actually store the
values. This allows flexibility in switching represen-
tations without disturbing the rest of the system. For
the rest of the paper, we will use “node” to refer to
instances of DataAbstract rather than to parts of a
mesh.

For the purposes of this paper, Data objects ref-
erence one of two types of nodes: Ready and Lazy.
Ready (or non-lazy) nodes store their values explic-
itly. Lazy nodes represent maths operations and link
to other lazy nodes in a directed acyclic graph (DAG)
to represent expressions. Special identity nodes are
used to wrap ready nodes so they can be added to
the graph. The acyclic property of the graph is guar-
anteed because a lazy node can only be formed using
existing nodes. For example, if three Data variables
P , Q, R which store their values in nodes V 1, V 2, V 3
(Figure 1(a)), then the expressions:

S = P +Q

T = S/R

result in the DAG shown in Figure 1(b).
Once in the DAG, a node is never modified except

when a sub-expression is replaced by a ready node.
The root of an expression is the node directly refer-
enced by the Data object (which might not be a root
in the underlying DAG). The roots in Figure 1 are
the nodes pointed to by dotted lines.

1This is particularly true when MPI is involved and the same
sampleID may represent different entities on different machines.

2We follow the terminology from Python where the rank of an
object is the number of indices required to identify a component.
The shape of an object is the range of values for each index.

(a)

(b)

Figure 1: A DAG representing an expression. Cir-
cles represent Data objects, squares represent Ready
nodes and diamonds represent lazy nodes. Empty di-
amonds represent identity operations. Solid lines are
DAG edges, dotted lines show ownership of nodes.

The lifetimes of interrelated Domain, Function-
Space and DataAbstract nodes are managed using
shared pointers from Boost (boo 2009). So for exam-
ple, Data have a shared pointer to their DataAbstract
node while FunctionSpaces hold a shared pointer to
their Domain. (Boost also allows us to make these
wrappers transparent to Python.)

Sharing DataAbstract nodes between Data objects
makes for efficient copy and return operations but it
introduces complications.3 When nodes are shared or
incorporated into a lazy expression, they must keep
their values from that point in time. Users should
not need to be aware that a particular Data object
uses shared values, so escript implements transparent
copy on write (COW)(Glass & Ables 2003). Any Data
method which modifies values, checks to see if it is the
sole owner of the node. If not, it makes a copy of the
node, transfers ownership to a it and modifies the
copy instead.

4 Threading

EScript employs the following threading model. The
Python layer (both user scripts and escript modules)
is assumed to be single threaded. Some objects and
methods are implemented in C++/C and these are
parallelised using OpenMP and MPI.

No multithreading apart from OpenMP is used.
Hence, there are no threading issues to consider apart
from those within individual parallel regions. Because
some of the memory allocation is based on the num-
ber of threads in use, we assume that the number of
threads available to OpenMP does not change. For
this reason we also do not use nested OpenMP paral-
lel regions.

In theory, the sole owner requirement for COW
could be checked using the .unique() method on
Boost pointers but threading issues prevented this.
Specifically, it proved difficult to differentiate between
a node being passed from one owner to another and
a node with two owners. Instead, we maintain a list
of which Data objects own which nodes. To simplify

3“Copies” here refers to objects created at the C++ level (pos-
sibly indirectly by calling Python methods), not the Python assign-
ment statement (which leads to two references to the same object).

CRPIT Volume 107 - Parallel and Distributed Computing 2010

72

matters involving large DAGs which encode a num-
ber of expressions, once a node becomes part of a lazy
expression it is assumed to always be shared.

5 Lazy Evaluation

Lazy evaluation is “popular in functional program-
ming languages (those with no effects) and rarely
found elsewhere”(Friedman & Wand 2008). Hudak’s
1989 survey (Hudak 1989) lists lazy evaluation as one
of the distinguishing features of modern functional
languages. His definition includes the idea that a par-
ticular expression be evaluated at most once.

The Haskell functional language (Thompson 1999)
uses this form of laziness (outermost function appli-
cation evaluated first and expressions only evaluated
once) for its expression processing. For functions de-
fined by conditionals, Haskell only performs enough
evaluation to determine which branch of the condition
to take. That is, it performs short circuit evaluation.

In the case of escript , there is a single condi-
tional type operation (a masked copy) and it does
not currently permit short circuit or lazy evaluation
(although it could be simply modified to do so).

The main benefits of lazy evaluation for
functional languages are (Thompson 1999)(Hudak
1989)(Pandey 2008):

1. Expressions need not be evaluated at all if they
are not required.

2. Since lists do not always need to be represented
explicitly, programs can be written to deal with
conceptually infinite lists.

Our requirements differ from the functional set-
ting. We do not need to process infinite objects. We
do allow large objects to be examined a chunk at a
time though, and our operations make use of this ca-
pability. However, user scripts must request this op-
eration explicitly for their own use.

Our expressions only include values and operations
from a predefined set. As such, they cannot contain
arbitrary user defined functions. Our implementation
links directly to values, so there are no names (func-
tions or variables) which require forming a closure.
We also differ from the functional version in that ex-
pressions may (depending on implementation strat-
egy) be evaluated more than once. This is because
caching the complete result is something we wish to
avoid.

6 Resolution

Values of a function represented as lazy data can be
resolved in two ways. Either the function can be
queried one sample at a time or it can be completely
resolved, that is all samples are evaluated and the re-
sult stored as a new function. Because of the extra
memory required, we wish to avoid complete resolu-
tion as much as possible. Note that the process for
assembling a sparse matrix to solve, only requires one
sample at a time.

In the current build, Lazy data will be completely
resolved when one of the following occurs:

• .resolve() is called on the expression.

• An attempt is made to set the value of the func-
tion at a point.4

• A masked copy is attempted.

• An operation is performed which depends on all
points for its value, such as integrate().

4This operation is permitted in escript but not encouraged.

• The expression becomes too large.

Apart from the first point, these may change in the
future. The size constraint refers to either the total
number of descendants or the height of the expression
root (or both).

Some care must be taken when acting on lazy or
shared data because escript may need to resolve or
duplicate the data. In both cases memory may be al-
located, deallocated and ownership may change. For
this reason, we require that issues of resolution and
node creation be settled before entering parallel sec-
tions. This restriction is only of concern to implemen-
tors.

We have implemented two strategies for evaluat-
ing samples in Lazy expressions. In both cases, the
expression is evaluated using a recursive post-order
traversal.

6.1 Temporary Buffer (Method 1)

A buffer is created and passed into the evaluation
to function somewhat like a stack. To evaluate each
node, space is reserved for the result and the remain-
ing space is available to evaluate the node’s children.
Evaluation returns a pointer to the buffer (and an off-
set within the buffer) containing the result. This is
to avoid copying data from non-lazy nodes under the
Identity operation. The size required for the buffer is
computed using a modified Sethi-Ullman register la-
belling algorithm (Appel & Palsberg 2002). Once the
result has been retrieved, the buffer can be disposed
of.

6.2 Per-Node Cache (Method 2)

Each node has a buffer big enough to store a single
sample for each OpenMP thread. When the value of
a sample for a lazy node is computed, it is stored in
this buffer. Again we make an exception for identity
nodes which wrap non-lazy values. The final value of
the sample can be retrieved from the root node of the
expression. The size limits on expressions described
above were introduced primarily for Method 1 and
should be relaxed or removed for this method.

7 Performance

The experiments for this paper were carried out on a
single compute node5 of an SGI ICE 8200 EX. The
code was compiled with support for OpenMP thread-
ing but not MPI. Please note that understanding the
applications from which these tests are derived is not
necessary to understand the performance changes.

7.1 Experiment 1 — Power Law

Here a script to compute power law values(Muhlhaus
& Regenauer-Lieb 2005) was run for a single OpenMP
thread6. See Appendix A for details of the script.
Both lazy resolution methods were tested. Fig-
ure 2 shows the peak memory and real time use for
runs with various numbers of elements. The val-
ues plotted are averaged over ten runs. The mem-
ory use for the two lazy methods is reasonably simi-
lar, although Method 1 (temporary buffer) is slightly
smaller. The run time for Method 1 was significantly
higher than non-lazy while Method 2 (node cache)
was only slightly higher.

532 GB RAM and two quad-core 2.8Ghz Xeon processors. The
version of escript was repository revision 2532.

6That is, OMP NUM THREADS=1.

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

73

 100

 150

 200

 250

 300

 350

 1000 10000 100000 1e+06

M
em

or
y

(M
B

)

Elements

Memory vs Elements (unmodified)

Non-Lazy
Lazy 1
Lazy 2

(a) Lazy 2 follows Lazy 1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1000 10000 100000 1e+06

R
ea

l T
im

e
(s

)

Elements

Real Time vs Elements (unmodified)

Non-Lazy
Lazy 1
Lazy 2

(b)

Figure 2: Unmodified Powerlaw

7.2 Repeated Sub-Expressions

The temporary buffer method uses less memory than
the second method because the same storage can be
used to evaluate multiple nodes. In memory intensive
problems though, both methods use less memory than
the non-lazy method.

The run time for Method 1 can be reduced by forc-
ing nodes which appear multiple times to be resolved
first before resolving the main expression. This means
that the values can be retrieved directly instead of be-
ing recomputed. This has two drawbacks:

1. More memory is required to hold the extra re-
solved expressions. This is particularly signifi-
cant if the results are of high rank. For example
the Drucker-Prager tests in Section 7.3 contain
rank 4 tensors.

2. The user must examine their expressions to de-
termine suitable variables for early resolution
and the order in which to do so. For example
if f is a function of g (and both are repeated ex-
pressions), then g should be resolved first. If not,
the work to evaluate g will be done twice.

Next we make two changes to the computation.
Computing the power law values builds an expression
η(θ+ω)/(ηθ2 +ω). We resolve η, θ, ω before building
the main expression.

Secondly, we rearrange calls to the L∞-norm so
that sub-expressions are evaluated first. The perfor-
mance for this modified version can be seen in Fig-
ure 3. Memory use for lazy resolution is still below
non-lazy resolution. The time spent for Method 1
now approximates non-lazy time, while Method 2 is
lower. Note that the memory usage in Figure 3(a) is
worse than in Figure 2(a).

7.3 Experiment 2 — Drucker-Prager

A script (see Appendix B) to compute coefficients for
Drucker-Prager flow (Gross et al. 2008) was run for a

 100

 150

 200

 250

 300

 350

 1000 10000 100000 1e+06

M
em

or
y

(M
B

)

Elements

Memory vs Elements (modified)

Non-Lazy
Lazy 1
Lazy 2

(a) Lazy 2 follows Lazy 1

 0

 5

 10

 15

 20

 25

 30

 35

 1000 10000 100000 1e+06

R
ea

l T
im

e
(s

)

Elements

Real Time vs Elements (modified)

Non-Lazy
Lazy 1
Lazy 2

(b) Lazy 1 follows Non-Lazy

Figure 3: Modified Powerlaw

single OpenMP thread. Only Method 2 (node cache)
was used for lazy testing. See Figures 4, 5 for results
(values shown are averaged over ten runs). In both
2D and 3D domains, Method 2 shows significantly
lower costs in both time and space. In Figure 5(a)
the non-lazy version could not complete the 512, 000
element test (presumably due to exhausting available
memory).

8 Discussion

When the two lazy evaluation methods are assessed
against our goals (memory, time and ease of use),
we have some success. For less complex expressions
such as those in the power law tests, there is some
reduction in memory use. There is a time penalty
involved however, so employing lazy evaluation for
this problem would only be of benefit in cases where
memory consumption is close to system limits.

The presence of repeated subexpressions seems to
severely limit the usefulness of Method 1 (temporary
buffer). As we showed in Section 7.2, these prob-
lems can be reduced be strategic calls to resolve()
and reordering of expressions but this comes at the
price of ease of use. Adding additional resolves also
increases memory useage (contrast Figure 2(a) with
Figure 3(a)). Deciding on the size limits for expres-
sions also requires some care.

On the other hand when used on Drucker-Prager,
Method 2 (node cache) showed significant reductions
in both memory and time for large instances. In fact
it rendered larger instances accessible.

Currently, lazy evaluation in escript can be
switched on or off at runtime. Doing this with
Method 2 seems to be the best policy.

Further work in this area should be directed to
making automatic resolution more intelligent and pro-
viding more specific guidance for users as to when a
problem is “large enough” for lazy evaluation to pro-
vide significant benefits.

CRPIT Volume 107 - Parallel and Distributed Computing 2010

74

 0

 500

 1000

 1500

 2000

 2500

 1000 10000 100000 1e+06

M
em

or
y

(M
B

)

Elements

Memory vs Elements (2D)

Non-Lazy
Lazy

(a)

 0

 5

 10

 15

 20

 25

 30

 1000 10000 100000 1e+06

R
ea

l T
im

e
(s

)

Elements

Time vs Elements (2D)

Non-Lazy
Lazy

(b)

Figure 4: Drucker-Prager 2D

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1000 10000 100000 1e+06

M
em

or
y

(M
B

)

Elements

Memory vs Elements (3D)

Non-Lazy
Lazy

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 1000 10000 100000 1e+06

R
ea

l T
im

e
(s

)

Elements

Time vs Elements (3D)

Non-Lazy
Lazy

(b)

Figure 5: Drucker-Prager 3D

References

Appel, A. W. & Palsberg, J. (2002), Modern compiler
implementation in Java, second edn, Cambridge
University Press.

boo (2009), ‘Boost C++ libraries’, http://www.
boost.org/.
URL: http://www.boost.org

Friedman, D. P. & Wand, M. (2008), Essentials of
Programming Languages, third edn, MIT Press.

Glass, G. & Ables, K. (2003), Unix for Programmers
and Users, third edn, Pearson Education.

Gross, L., Cumming, B., Steube, K. & Weatherley, D.
(2007), ‘A python module for pde-based numerical
modelling’, PARA 4699, 270–279.

Gross, L., Muhlhaus, H., Thorne, E. & Steube, K.
(2008), Earthquakes : Simulations, Sources and
Tsunamis, Pageoph Topical Volumes, Birkhäuser
Basel, chapter A New Design of Scientific Software
Using Python and XML, pp. 653–670.

Hudak, P. (1989), ‘Conception, evolution, and appli-
cation of functional programming languages’, ACM
Comput. Surv. 21(3), 359–411.

lpe (2009), ‘escript-finley’, https://launchpad.net/
escript-finley.

Muhlhaus, H.-B. & Regenauer-Lieb, K. (2005), ‘To-
wards a self-consistent plate mantle model that
includes elasticity: simple benchmarks and appli-
cation to basic modes of convection’, Geophysical
Journal International 163(2), 788–800.

omp (2009a), ‘OpenMP specification’, http://
openmp.org/.

omp (2009b), ‘OpenMP tutorial’, https:
//computing.llnl.gov/tutorials/openMP/.

Pandey, A. K. (2008), Programming Languages, Prin-
ciples and Paradigms, Alpha Science.

Thompson, S. (1999), Haskell, The craft of Functional
Programming, second edn, Addison-Wesley.

A Power Law script

This is the script used in the power law tests (some
boilerplate and irrelevant lines removed). The NE
variable should be set to the number of elements re-
quired.

SIDE=int(math.ceil(float(NE)**(1./2)))
setEscriptParamInt("TOO_MANY_LEVELS",15)
setEscriptParamInt("TOO_MANY_NODES",500)

d=Rectangle(SIDE,SIDE).getX()+(1,1)
pl=PowerLaw(numMaterials=3, verbose=False)
pl.setDruckerPragerLaw(tau_Y=100.)
pl.setPowerLaws(eta_N=[2.,0.01,25./4.], \

tau_t=[1, 25.,64.], power=[1,2,3])
pl.setEtaTolerance(1.e-8)
z=pl.getEtaEff(length(d))
z.resolve()

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

75

B Drucker Prager script

This is the script used in the drucker prager tests
(some boilerplate and irrelevant lines removed). The
domain variable should be a Rectangle (or Brick for
3D) with the required number of elements.

setEscriptParamInt("TOO_MANY_NODES",10000)
setEscriptParamInt("TOO_MANY_LEVELS",70)

G=10.
K=12
alpha=0.2
beta=0.03
h=1.
deps_th=0.1

stress=Tensor(1.,Function(domain))
tau_Y_safe=Scalar(13.,Function(domain))
tau_Y=Scalar(13.,Function(domain))
du=domain.getX()
plastic_stress=Scalar(0.,Function(domain))

d=domain.getDim()
abs_tol=1.e-15
SAFTY_FACTOR=1.e-8
k3=kronecker(Function(domain))
elastic trial stress:
g=grad(du)
D=symmetric(g)
W=nonsymmetric(g)
s_e=stress+K*deps_th*k3+2*G*D+(K-2./3 \

*G)*trace(D)*k3+2*symmetric(\
matrix_mult(W,stress))

p_e=-1./d*trace(s_e)
s_e_dev=s_e+p_e*k3
tau_e=sqrt(1./2*inner(s_e_dev,s_e_dev))

F=tau_e-alpha*p_e-tau_Y
chi=whereNonNegative(F+SAFTY_FACTOR*tau_Y)
l=chi*F/(h+G+beta*K)
tau=tau_e-G*l
stress=tau/(tau_e+abs_tol* \

whereZero(tau_e,abs_tol)) \
*s_e_dev-(p_e+l*beta*K)*k3

plastic_stress=plastic_stress+l

hardening=(tau_Y-tau_Y_safe)/(l+abs_tol* \
whereZero(l))

sXk3=outer(stress,k3)
k3Xk3=outer(k3,k3)
s_dev=stress-trace(stress)*(k3/d)
tmp=G*s_dev/(tau+abs_tol* \

whereZero(tau,abs_tol))

S=G*(swap_axes(k3Xk3,0,3)+ \
swap_axes(k3Xk3,1,3)) + (K-2./3*G) \
*k3Xk3 + (sXk3-swap_axes(\
swap_axes(sXk3,1,2),2,3)) \
+ 1./2*(swap_axes(swap_axes(sXk3, \
0,2),2,3) \

-swap_axes(swap_axes(sXk3,0,3),2,3)\
-swap_axes(sXk3,1,2) \
+swap_axes(sXk3,1,3)) \

- outer(chi/(hardening+G+alpha*beta
K)(tmp+beta*K*k3),tmp+alpha*K*k3)

S.resolve()
tau.resolve()
stress.resolve()
plastic_stress.resolve()

CRPIT Volume 107 - Parallel and Distributed Computing 2010

76

Author Index

Akbar, Md. Mostofa, 31
Akeila, Lama, 41
Aloisio, Giovanni, 51
Atkinson, Alistair, 21

Brock, Michael, 3

Cesare, Silvio, 61
Chen, Jinjun, iii
Chin, Kwan-Wu, 13

Epicoco, Italo, 51

Fenwick, Joel, 71

Goscinski, Andrzej, 3

Gross, Lutz, 71

Hossain, Tareque, 31
Humadi, Wafaa, 41

Manning, Eric. G., 31
Mocavero, Silvia, 51

Ranjan, Rajiv, iii

Shelford, Steven, 31
Shoja, Gholamali C., 31
Sinnen, Oliver, 41

Xiang, Yang, 61

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

77

Recent Volumes in the CRPIT Series

ISSN 1445-1336

Listed below are some of the latest volumes published in the ACS Series Conferences in Research and
Practice in Information Technology. The full text of most papers (in either PDF or Postscript format) is
available at the series website http://crpit.com.

Volume 84 - Artificial Intelligence and Data Mining 2007
Edited by Kok-Leong Ong, Deakin University,
Australia, Wenyuan Li, University of Texas at
Dallas, USA and Junbin Gao, Charles Sturt
University, Australia. December, 2007. 978-1-
920682-65-1.

Contains the proceedings of the 2nd International Workshop on Integrating AI and Data Mining
(AIDM 2007), Gold Coast, Australia. December 2007.

Volume 85 - Advances in Ontologies 2007
Edited by Thomas Meyer, Meraka Institute,
South Africa and Abhaya Nayak, Macquarie
University, Australia. December, 2007. 978-1-
920682-66-8.

Contains the proceedings of the 3rd Australasian Ontology Workshop (AOW 2007), Gold Coast,
Queensland, Australia.

Volume 86 - Safety Critical Systems and Software 2007
Edited by Tony Cant, Defence Science and Tech-
nology Organisation, Australia. December, 2007.
978-1-920682-67-5.

Contains the proceedings of the 12th Australian Conference on Safety Critical Systems and
Software, August 2007, Adelaide, Australia.

Volume 87 - Data Mining and Analytics 2008
Edited by John F. Roddick, Jiuyong Li, Peter
Christen and Paul Kennedy. November, 2008.
978-1-920682-68-2.

Contains the proceedings of the 7th Australasian Data Mining Conference (AusDM 2008),
Adelaide, Australia. December 2008.

Volume 88 - Koli Calling 2007
Edited by Raymond Lister University of Technol-
ogy, Sydney and SimonUniversity of Newcastle.
November, 2007. 978-1-920682-69-9.

Contains the proceedings of the 7th Baltic Sea Conference on Computing Education Research.

Volume 89 - Australian Video
Edited by Heng Tao Shen and Michael Frater.
October, 2008. 978-1-920682-70-5.

Contains the proceedings of the 1st Australian Video Conference.

Volume 90 - Advances in Ontologies
Edited by Thomas Meyer, Meraka Institute,
South Africa and Mehmet Orgun, Macquarie
University, Australia. September, 2008. 978-1-
920682-71-2.

Contains the proceedings of the Knowledge Representation Ontology Workshop (KROW 2008),
Sydney, September 2008.

Volume 91 - Computer Science 2009
Edited by Bernard Mans Macquarie University.
January, 2009. 978-1-920682-72-9.

Contains the proceedings of the Thirty-Second Australasian Computer Science Conference
(ACSC2009), Wellington, New Zealand, January 2009.

Volume 92 - Database Technologies 2009
Edited by Xuemin Lin, University of New
South Wales and Athman Bouguettaya, CSIRO.
January, 2009. 978-1-920682-73-6.

Contains the proceedings of the Twentieth Australasian Database Conference (ADC2009),
Wellington, New Zealand, January 2009.

Volume 93 - User Interfaces 2009
Edited by Paul Calder Flinders University and
Gerald Weber University of Auckland. January,
2009. 978-1-920682-74-3.

Contains the proceedings of the Tenth Australasian User Interface Conference (AUIC2009),
Wellington, New Zealand, January 2009.

Volume 94 - Theory of Computing 2009
Edited by Prabhu Manyem, University of
Ballarat and Rod Downey, Victoria University of
Wellington. January, 2009. 978-1-920682-75-0.

Contains the proceedings of the Fifteenth Computing: The Australasian Theory Symposium
(CATS2009), Wellington, New Zealand, January 2009.

Volume 95 - Computing Education 2009
Edited by Margaret Hamilton, RMIT University
and Tony Clear, Auckland University of Technol-
ogy. January, 2009. 978-1-920682-76-7.

Contains the proceedings of the Eleventh Australasian Computing Education Conference
(ACE2009), Wellington, New Zealand, January 2009.

Volume 96 - Conceptual Modelling 2009
Edited by Markus Kirchberg, Institute for In-
focomm Research, A*STAR, Singapore and Se-
bastian Link, Victoria University of Wellington,
New Zealand. January, 2009. 978-1-920682-77-4.

Contains the proceedings of the Fifth Asia-Pacific Conference on Conceptual Modelling
(APCCM2008), Wollongong, NSW, Australia, January 2008.

Volume 97 - Health Data and Knowledge Management 2009
Edited by James R. Warren, University of Auck-
land. January, 2009. 978-1-920682-78-1.

Contains the proceedings of the Third Australasian Workshop on Health Data and Knowledge
Management (HDKM 2009), Wellington, New Zealand, January 2009.

Volume 98 - Information Security 2009
Edited by Ljiljana Brankovic, University of New-
castle and Willy Susilo, University of Wollon-
gong. January, 2009. 978-1-920682-79-8.

Contains the proceedings of the Australasian Information Security Conference (AISC 2009),
Wellington, New Zealand, January 2009.

Volume 99 - Grid Computing and e-Research 2009
Edited by Paul Roe and Wayne Kelly, QUT.
January, 2009. 978-1-920682-80-4.

Contains the proceedings of the Australasian Workshop on Grid Computing and e-Research
(AusGrid 2009), Wellington, New Zealand, January 2009.

Volume 100 - Safety Critical Systems and Software 2007
Edited by Tony Cant, Defence Science and Tech-
nology Organisation, Australia. December, 2008.
978-1-920682-81-1.

Contains the proceedings of the 13th Australian Conference on Safety Critical Systems and
Software, Canberra Australia.

Volume 101 - Data Mining and Analytics 2009
Edited by Paul J. Kennedy, University of Tech-
nology, Sydney, Kok–Leong Ong, Deakin Univer-
sity and Peter Christen, The Australian National
University. November, 2009. 978-1-920682-82-8.

Contains the proceedings of the 8th Australasian Data Mining Conference (AusDM 2009),
Melbourne Australia.

CRPIT Volume 107 - Parallel and Distributed Computing 2010

78

	04_Mostofa.pdf
	1 Introduction
	1.1 MMMKP for Solving Multimedia Distribution Problems

	2 Related Work on Solving Knapsack Problems
	3 Arbitrated Heuristic (A-HEU) for Solving the MMMKP
	3.1 Format of the Messages
	3.2 Sequence of Events in A-HEU
	3.3 Complexity of A-HEU

	4 Experimental Results
	4.1 Test Pattern Generation
	4.2 Test Results
	4.3 Observations
	4.4 Discussion of the Performance of A-HEU

	5 Conclusion
	6 References

